Pareto optimality and Nash equilibrium are two standard solution concepts for cooperative and non-cooperative games, respectively. At the outset, these concepts are incompatible-see, for instance, [
Citation: |
[1] |
R. Amir and N. Nannerup, Information structure and the tragedy of the commons in resource extraction, Journal of Bioeconomics, 8 (2006), 147-165.
![]() |
[2] |
T. Basar and Q. Zhu, Prices of anarchy, information, and cooperation, in differential games, Dyn Games Appl, 1 (2011), 50-73.
doi: 10.1007/s13235-010-0002-3.![]() ![]() ![]() |
[3] |
L. D. Berkovitz and N. G. Medhin,
Nonlinear Optimal Control Theory, CRC Press, Boca Raton, FL, 2013.
![]() ![]() |
[4] |
J. Case, A class of games having Pareto optimal Nash equilibria, J Optim Theory Appl, 13 (1974), 379-385.
doi: 10.1007/BF00934872.![]() ![]() ![]() |
[5] |
C. D. Charalambous, Decentralized optimality conditions of stochastic differential decision problems via Girsanov's measure transformation Math Control Signals Syst, 28 (2016), Art 19, 55 pp.
doi: 10.1007/s00498-016-0168-3.![]() ![]() ![]() |
[6] |
C. Chiarella, M. C. Kemp, N. V. Long and K. Okuguchi, On the economics of international fisheries, Inter Econom Rev, 25 (1984), 85-92.
doi: 10.2307/2648869.![]() ![]() ![]() |
[7] |
J. E. Cohen, Cooperation and self-interest: Pareto-inefficiency of Nash equilibria in finite random games, Proc Natl Acad Sci USA, 95 (1998), 9724-9731.
doi: 10.1073/pnas.95.17.9724.![]() ![]() ![]() |
[8] |
E. J. Dockner, S. Jorgensen, N. V. Long and G. Sorger,
Differential Games in Economics and Management Science, Cambridge University Press, New York, 2000.
doi: 10.1017/CBO9780511805127.![]() ![]() ![]() |
[9] |
E. J. Dockner and V. Kaitala, On efficient equilibrium solutions in dynamic games of resource management, Resour Energy, 11 (1989), 23-34.
![]() |
[10] |
P. Dubey, Inefficiency of Nash equilibria, Math Oper Res, 11 (1986), 1-8.
doi: 10.1287/moor.11.1.1.![]() ![]() ![]() |
[11] |
J. C. Engwerda, Necessary and sufficient conditions for Pareto optimal solutions of cooperative differential games, SIAM J Control Optim, 48 (2010), 3859-3881.
doi: 10.1137/080726227.![]() ![]() ![]() |
[12] |
A. Fonseca-Morales and O. Hernández-Lerma, Potential differential games, Dyn. Games Appl., 7 (2017).
doi: 10.1007/s13235-017-0218-6.![]() ![]() ![]() |
[13] |
D. González-Sánchez and O. Hernández-Lerma, Discrete-Time Stochastic Control and Dynamic Potential Games, Springer, New York, 2013.
doi: 10.1007/978-3-319-01059-5.![]() ![]() ![]() |
[14] |
D. González-Sánchez and O. Hernández-Lerma, A survey of static and dynamic potential games, Sci China Math, 59 (2016), 2075-2102.
doi: 10.1007/s11425-016-0264-6.![]() ![]() ![]() |
[15] |
R. Josa-Fombellida and J. P. Rincón-Zapatero, Euler-Lagrange equations of stochastic differential games: application to a game of a productive asset, Economic Theory, 59 (2015), 61-108.
doi: 10.1007/s00199-015-0873-z.![]() ![]() ![]() |
[16] |
X. Li and J. Yong,
Optimal Control Theory for Infinite Dimensional Systems, Birkhauser, Boston, 1995.
doi: 10.1007/978-1-4612-4260-4.![]() ![]() ![]() |
[17] |
N. V. Long, Dynamic games in the economics of natural resources: A survey, Dyn Games Appl, 1 (2011), 115-148.
doi: 10.1007/s13235-010-0003-2.![]() ![]() ![]() |
[18] |
G. Martin-Herran and J. P. Rincón-Zapatero, Efficient Markov perfect Nash equilibria: Theory and application to dynamic fishery games, J Econom Dynam Control, 29 (2005), 1073-1096.
doi: 10.1016/j.jedc.2004.08.004.![]() ![]() ![]() |
[19] |
P. V. Reddy and J. C. Engwerda, Necessary and sufficient conditions for Pareto optimality in infinite horizon cooperative differential games, IEEE Trans Autom Control, 59 (2014), 2536-2542.
doi: 10.1109/TAC.2014.2305933.![]() ![]() ![]() |
[20] |
A. Seierstad, Pareto improvements of Nash equilibria in differential games, Dyn Games Appl, 4 (2014), 363-375.
doi: 10.1007/s13235-013-0093-8.![]() ![]() ![]() |
[21] |
C. P. Simon and L. Blume,
Mathematics for Economists, Norton & Co, New York, 1994.
![]() |
[22] |
F. Van Der Ploeg and A. J. de Zeeuw, International aspects of pollution control, Environmental and Resource Economics, 2 (1992), 117-139.
![]() |
[23] |
J. Yong and X. Y. Zhou,
Stochastic Controls: Hamiltonian Systems and HJB Equations, Springer, New York, 1999.
doi: 10.1007/978-1-4612-1466-3.![]() ![]() ![]() |