January  2018, 5(1): 21-30. doi: 10.3934/jdg.2018003

Pricing bond options in emerging markets: A case study

1. 

Department of Legal Governance, Risk Management, and Compliance, AFISA SURA, L.A. De Herrera 1248 Torre 3 piso 16, Montevideo, Uruguay

2. 

Centro de Matemática, Facultad de Ciencias, Universidad de la Repúlbica, Iguá 4225, CP 11400, Montevideo, Uruguay

Received  January 2017 Revised  September 2017 Published  January 2018

We propose two methodologies to price sovereign bond options in emerging markets. The motivation is to provide hedging protection against price fluctuations, departing from the not liquid data provided by the stock exchange. Taking this into account, we first compute prices provided by the Jamshidian formula, when modeling the interest rate through Vasicek model, with parameters estimated with the help of the Kalman filter. The second methodology is the pricing strategy provided by the Black-Derman-Toy tree model. A numerical comparison is carried out. The first equilibrium approach provides parsimonious modeling, is less sensitive to daily changes and more robust, while the second non-arbitrage approach provides more fluctuating but also what can be considered more accurate option prices.

Citation: Guillermo Magnou, Ernesto Mordecki, Andrés Sosa. Pricing bond options in emerging markets: A case study. Journal of Dynamics and Games, 2018, 5 (1) : 21-30. doi: 10.3934/jdg.2018003
References:
[1]

F. Avalos and R. Moreno, Hedging in Derivatives Markets: The Experience of Chile, Quarterly Review, March 2013 -Bank for International Settlements, 2013.

[2]

OTC Interest Rate Derivatives Turnover in April 2016, Bank for International Settlements, 2016. Available from: http://www.bis.org/publ/rpfx16.htm.

[3]

F. BlackE. Derman and W. Toy, A one-factor model of interest rates and its application to treasury bond options, Financial Analysts Journal, 46 (1990), 24-32.  doi: 10.2469/faj.v46.n1.33.

[4]

F. Black and P. Karasinski, Bond and Option pricing when Short rates are Log-normal, Financial Analysts Journal, (1991), 52-59. 

[5] D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice with Smile, Inflation and Credit, 2$^{nd}$ edition, Springer-Verlag, New York, 2006. 
[6]

R. Chen and L. Scott, Multi-factor cox-ingersoll-ross models of the term structure: Estimates and tests from a kalman filter model, The Journal of Real Estate Finance and Economics, 27 (2003), 143-172. 

[7]

M. Choy and J. Cerna, Interrelación entre los mercados de derivados y el mercado de bonos soberanos del Perú y su impacto en las tasas de interés, [Working Paper -Banco Central de Reserva de Perú], (2012).

[8]

R. Dodd and S. Griffith-Jones, Brazil's Derivatives Markets: Hedging, Central Bank Intervention and Regulation, [Cepal Report], 2007.

[9]

D. Filipovic, Term-Structure Models, Springer Finance, Vienna, 2009. doi: 10.1007/978-3-540-68015-4.

[10] A. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, 1992.  doi: 10.1017/CBO9781107049994.
[11]

D. HeathR. Jarrow and A. Morton, Bond pricing and the term structure of interest rates: A new methodology, Econometrica, 60 (1992), 77-105. 

[12]

T. Ho and S. Lee, Term structure movements and pricing interest rate contingent claims, Journal of Finance, 41 (1986), 1011-1029.  doi: 10.1111/j.1540-6261.1986.tb02528.x.

[13]

J. Hull and A. White, One factor interest rate models and the valuation of interest rate derivative securities, Journal of Financial and Quantitative Analysis, 28 (1993), 235-254.  doi: 10.2307/2331288.

[14]

D. Jamieson, Affine Term-Structure Models: Theory and Implementation, [Working Paper -Bank of Canada], 2001.

[15]

F. Jamshidian, An exact bond option formula, The Journal of Finance, 44 (1989), 205-209.  doi: 10.1111/j.1540-6261.1989.tb02413.x.

[16]

R. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82 (1960), 35-45.  doi: 10.1115/1.3662552.

[17]

G. Magnou, Opciones Financieras Sobre Bonos. Una Aplicación para el Mercado Uruguayo, Mg. thesis, Facultad de Ingeniería, Universidad de la República, 2015.

[18]

E. Mordecki and A. Sosa, Modeling the Uruguayan debt through gaussians models, Trends in Mathematical Economics. Springer Proceedings of Mathematics and Statistics Series, 1 (2016), 331-346. 

[19]

C. Upper and M. Valli, Emerging derivatives markets?, International banking and financial market developments, (2016), 67-80. 

[20]

O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, 5 (1977), 177-188.  doi: 10.1002/9781119186229.ch6.

show all references

References:
[1]

F. Avalos and R. Moreno, Hedging in Derivatives Markets: The Experience of Chile, Quarterly Review, March 2013 -Bank for International Settlements, 2013.

[2]

OTC Interest Rate Derivatives Turnover in April 2016, Bank for International Settlements, 2016. Available from: http://www.bis.org/publ/rpfx16.htm.

[3]

F. BlackE. Derman and W. Toy, A one-factor model of interest rates and its application to treasury bond options, Financial Analysts Journal, 46 (1990), 24-32.  doi: 10.2469/faj.v46.n1.33.

[4]

F. Black and P. Karasinski, Bond and Option pricing when Short rates are Log-normal, Financial Analysts Journal, (1991), 52-59. 

[5] D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice with Smile, Inflation and Credit, 2$^{nd}$ edition, Springer-Verlag, New York, 2006. 
[6]

R. Chen and L. Scott, Multi-factor cox-ingersoll-ross models of the term structure: Estimates and tests from a kalman filter model, The Journal of Real Estate Finance and Economics, 27 (2003), 143-172. 

[7]

M. Choy and J. Cerna, Interrelación entre los mercados de derivados y el mercado de bonos soberanos del Perú y su impacto en las tasas de interés, [Working Paper -Banco Central de Reserva de Perú], (2012).

[8]

R. Dodd and S. Griffith-Jones, Brazil's Derivatives Markets: Hedging, Central Bank Intervention and Regulation, [Cepal Report], 2007.

[9]

D. Filipovic, Term-Structure Models, Springer Finance, Vienna, 2009. doi: 10.1007/978-3-540-68015-4.

[10] A. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, 1992.  doi: 10.1017/CBO9781107049994.
[11]

D. HeathR. Jarrow and A. Morton, Bond pricing and the term structure of interest rates: A new methodology, Econometrica, 60 (1992), 77-105. 

[12]

T. Ho and S. Lee, Term structure movements and pricing interest rate contingent claims, Journal of Finance, 41 (1986), 1011-1029.  doi: 10.1111/j.1540-6261.1986.tb02528.x.

[13]

J. Hull and A. White, One factor interest rate models and the valuation of interest rate derivative securities, Journal of Financial and Quantitative Analysis, 28 (1993), 235-254.  doi: 10.2307/2331288.

[14]

D. Jamieson, Affine Term-Structure Models: Theory and Implementation, [Working Paper -Bank of Canada], 2001.

[15]

F. Jamshidian, An exact bond option formula, The Journal of Finance, 44 (1989), 205-209.  doi: 10.1111/j.1540-6261.1989.tb02413.x.

[16]

R. Kalman, A new approach to linear filtering and prediction problems, Journal of Basic Engineering, 82 (1960), 35-45.  doi: 10.1115/1.3662552.

[17]

G. Magnou, Opciones Financieras Sobre Bonos. Una Aplicación para el Mercado Uruguayo, Mg. thesis, Facultad de Ingeniería, Universidad de la República, 2015.

[18]

E. Mordecki and A. Sosa, Modeling the Uruguayan debt through gaussians models, Trends in Mathematical Economics. Springer Proceedings of Mathematics and Statistics Series, 1 (2016), 331-346. 

[19]

C. Upper and M. Valli, Emerging derivatives markets?, International banking and financial market developments, (2016), 67-80. 

[20]

O. Vasicek, An equilibrium characterization of the term structure, Journal of Financial Economics, 5 (1977), 177-188.  doi: 10.1002/9781119186229.ch6.

Figure 1.  Monthly returns of AFAPS. Year 2013 (in UYU).
Figure 2.  Example of a four period binomial tree.
Table 1.  Option prices for zero coupon USD (left) and UI bonds (right). VK and BDT stand for Vasicek and Black-Derman-Toy models respectively
USD 3 months option prices UI 3 months option prices
Strike CALL PUT Strike CALL PUT
VK BDT VK BDT VK BDT VK BDT
$99.50$ $0.000$ $0.000$ $5.268$ $5.069$ $94.00$ $0.000$ $0.000$ $3.617$ $3.580$
$97.06$ $0.000$ $0.000$ $2.831$ $2.641$ $92.18$ $0.000$ $0.000$ $1.817$ $1.782$
$94.69$ $0.001$ $0.187$ $0.464$ $0.459$ $90.40$ $0.117$ $0.240$ $0.173$ $0.259$
$92.37$ $1.853$ $2.044$ $0.000$ $0.007$ $88.65$ $1.675$ $1.711$ $0.000$ $0.001$
$90.11$ $4.111$ $4.291$ $0.000$ $0.000$ $86.93$ $3.377$ $3.405$ $0.000$ $0.000$
USD 6 months option prices UI 6 months option prices
Strike CALL PUT Strike CALL PUT
VK BDT VK BDT VK BDT VK BDT
$99.55$ $0.000$ $0.000$ $5.117$ $4.852$ $94.76$ $0.000$ $0.000$ $3.341$ $3.128$
$97.36$ $0.000$ $0.000$ $2.934$ $2.673$ $93.15$ $0.000$ $0.002$ $1.766$ $1.569$
$95.22$ $0.015$ $0.160$ $0.801$ $0.703$ $91.58$ $0.086$ $0.267$ $0.316$ $0.300$
$93.12$ $1.129$ $1.599$ $0.000$ $0.058$ $90.03$ $1.286$ $1.484$ $0.001$ $0.008$
$91.07$ $3.336$ $3.582$ $0.000$ $0.003$ $88.51$ $2.773$ $2.958$ $0.000$ $0.000$
USD 1 year option prices UI 1 year option prices
Strike CALL PUT Strike CALL PUT
VK BDT VK BDT VK BDT VK BDT
$99.65$ $0.000$ $0.000$ $4.561$ $4.224$ $96.25$ $0.000$ $0.000$ $2.673$ $2.229$
$97.94$ $0.000$ $0.000$ $2.867$ $2.538$ $95.10$ $0.000$ $0.005$ $1.573$ $1.136$
$96.26$ $0.000$ $0.069$ $1.204$ $0.950$ $93.95$ $0.037$ $0.231$ $0.511$ $0.277$
$94.61$ $0.441$ $0.918$ $0.011$ $0.170$ $92.83$ $0.619$ $1.047$ $0.002$ $0.021$
$92.99$ $2.034$ $2.373$ $0.000$ $0.023$ $91.71$ $1.669$ $2.086$ $0.000$ $0.001$
USD 3 months option prices UI 3 months option prices
Strike CALL PUT Strike CALL PUT
VK BDT VK BDT VK BDT VK BDT
$99.50$ $0.000$ $0.000$ $5.268$ $5.069$ $94.00$ $0.000$ $0.000$ $3.617$ $3.580$
$97.06$ $0.000$ $0.000$ $2.831$ $2.641$ $92.18$ $0.000$ $0.000$ $1.817$ $1.782$
$94.69$ $0.001$ $0.187$ $0.464$ $0.459$ $90.40$ $0.117$ $0.240$ $0.173$ $0.259$
$92.37$ $1.853$ $2.044$ $0.000$ $0.007$ $88.65$ $1.675$ $1.711$ $0.000$ $0.001$
$90.11$ $4.111$ $4.291$ $0.000$ $0.000$ $86.93$ $3.377$ $3.405$ $0.000$ $0.000$
USD 6 months option prices UI 6 months option prices
Strike CALL PUT Strike CALL PUT
VK BDT VK BDT VK BDT VK BDT
$99.55$ $0.000$ $0.000$ $5.117$ $4.852$ $94.76$ $0.000$ $0.000$ $3.341$ $3.128$
$97.36$ $0.000$ $0.000$ $2.934$ $2.673$ $93.15$ $0.000$ $0.002$ $1.766$ $1.569$
$95.22$ $0.015$ $0.160$ $0.801$ $0.703$ $91.58$ $0.086$ $0.267$ $0.316$ $0.300$
$93.12$ $1.129$ $1.599$ $0.000$ $0.058$ $90.03$ $1.286$ $1.484$ $0.001$ $0.008$
$91.07$ $3.336$ $3.582$ $0.000$ $0.003$ $88.51$ $2.773$ $2.958$ $0.000$ $0.000$
USD 1 year option prices UI 1 year option prices
Strike CALL PUT Strike CALL PUT
VK BDT VK BDT VK BDT VK BDT
$99.65$ $0.000$ $0.000$ $4.561$ $4.224$ $96.25$ $0.000$ $0.000$ $2.673$ $2.229$
$97.94$ $0.000$ $0.000$ $2.867$ $2.538$ $95.10$ $0.000$ $0.005$ $1.573$ $1.136$
$96.26$ $0.000$ $0.069$ $1.204$ $0.950$ $93.95$ $0.037$ $0.231$ $0.511$ $0.277$
$94.61$ $0.441$ $0.918$ $0.011$ $0.170$ $92.83$ $0.619$ $1.047$ $0.002$ $0.021$
$92.99$ $2.034$ $2.373$ $0.000$ $0.023$ $91.71$ $1.669$ $2.086$ $0.000$ $0.001$
[1]

Junyoung Jang, Kihoon Jang, Hee-Dae Kwon, Jeehyun Lee. Feedback control of an HBV model based on ensemble kalman filter and differential evolution. Mathematical Biosciences & Engineering, 2018, 15 (3) : 667-691. doi: 10.3934/mbe.2018030

[2]

Mojtaba F. Fathi, Ahmadreza Baghaie, Ali Bakhshinejad, Raphael H. Sacho, Roshan M. D'Souza. Time-resolved denoising using model order reduction, dynamic mode decomposition, and kalman filter and smoother. Journal of Computational Dynamics, 2020, 7 (2) : 469-487. doi: 10.3934/jcd.2020019

[3]

Wawan Hafid Syaifudin, Endah R. M. Putri. The application of model predictive control on stock portfolio optimization with prediction based on Geometric Brownian Motion-Kalman Filter. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021119

[4]

Patrick Gerard, Christophe Pallard. A mean-field toy model for resonant transport. Kinetic and Related Models, 2010, 3 (2) : 299-309. doi: 10.3934/krm.2010.3.299

[5]

Jonathan Ben-Artzi, Stephen Pankavich, Junyong Zhang. A toy model for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2022, 15 (3) : 341-354. doi: 10.3934/krm.2021053

[6]

Alexander Bibov, Heikki Haario, Antti Solonen. Stabilized BFGS approximate Kalman filter. Inverse Problems and Imaging, 2015, 9 (4) : 1003-1024. doi: 10.3934/ipi.2015.9.1003

[7]

Russell Johnson, Carmen Núñez. The Kalman-Bucy filter revisited. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4139-4153. doi: 10.3934/dcds.2014.34.4139

[8]

Ryszard Rudnicki, Radoslaw Wieczorek. Does assortative mating lead to a polymorphic population? A toy model justification. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 459-472. doi: 10.3934/dcdsb.2018031

[9]

Sergey V Lototsky, Henry Schellhorn, Ran Zhao. An infinite-dimensional model of liquidity in financial markets. Probability, Uncertainty and Quantitative Risk, 2021, 6 (2) : 117-138. doi: 10.3934/puqr.2021006

[10]

Mahir Demir, Suzanne Lenhart. A spatial food chain model for the Black Sea Anchovy, and its optimal fishery. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 155-171. doi: 10.3934/dcdsb.2020373

[11]

Andreas Bock, Colin J. Cotter. Learning landmark geodesics using the ensemble Kalman filter. Foundations of Data Science, 2021, 3 (4) : 701-727. doi: 10.3934/fods.2021020

[12]

Cuilian You, Le Bo. Option pricing formulas for generalized fuzzy stock model. Journal of Industrial and Management Optimization, 2020, 16 (1) : 387-396. doi: 10.3934/jimo.2018158

[13]

Bilgi Yilmaz, A. Sevtap Selcuk-Kestel. A stochastic approach to model housing markets: The US housing market case. Numerical Algebra, Control and Optimization, 2018, 8 (4) : 481-492. doi: 10.3934/naco.2018030

[14]

Kody Law, Abhishek Shukla, Andrew Stuart. Analysis of the 3DVAR filter for the partially observed Lorenz'63 model. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1061-1078. doi: 10.3934/dcds.2014.34.1061

[15]

Shusuke Komuro, Hiroshi Konno. Empirical studies on internationally diversified investment using a stock-bond integrated model. Journal of Industrial and Management Optimization, 2005, 1 (4) : 433-442. doi: 10.3934/jimo.2005.1.433

[16]

Rehana Naz, Imran Naeem. Exact solutions of a Black-Scholes model with time-dependent parameters by utilizing potential symmetries. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2841-2851. doi: 10.3934/dcdss.2020122

[17]

Chun-Hui He, Shu-Hua Liu, Chao Liu, Hamid Mohammad-Sedighi. A novel bond stress-slip model for 3-D printed concretes. Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1669-1683. doi: 10.3934/dcdss.2021161

[18]

Thomas Hillen, Jeffery Zielinski, Kevin J. Painter. Merging-emerging systems can describe spatio-temporal patterning in a chemotaxis model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2513-2536. doi: 10.3934/dcdsb.2013.18.2513

[19]

Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou. Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 1033-1054. doi: 10.3934/mbe.2018046

[20]

Gerasimos G. Rigatos, Efthymia G. Rigatou, Jean Daniel Djida. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1017-1035. doi: 10.3934/mbe.2015.12.1017

 Impact Factor: 

Metrics

  • PDF downloads (154)
  • HTML views (326)
  • Cited by (0)

[Back to Top]