This paper deals with the risk probability for finite horizon semi-Markov decision processes with loss rates. The criterion to be minimized is the risk probability that the total loss incurred during a finite horizon exceed a loss level. For such an optimality problem, we first establish the optimality equation, and prove that the optimal value function is a unique solution to the optimality equation. We then show the existence of an optimal policy, and develop a value iteration algorithm for computing the value function and optimal policies. We also derive the approximation of the value function and the rules of iteration. Finally, a numerical example is given to illustrate our results.
Citation: |
N. Bauerle and U. Rieder, Markov Decision Processes with Application to Finance, Universitext, Springer, Heidelberg, 2011.
![]() ![]() |
|
M. Bouakiz
and Y. Kebir
, Target-level criterion in Markov decision processes, Journal of Optimization Theory and Applications, 86 (1995)
, 1-15.
doi: 10.1007/BF02193458.![]() ![]() ![]() |
|
M. K. Ghosh
and S. Subhamay
, Non-stationary semi-Markov secision processes on a finite horizon, Stochastic Analysis and Applications, 31 (2013)
, 183-190.
doi: 10.1080/07362994.2013.741405.![]() ![]() ![]() |
|
X. P. Guo and O. Hernández-Lerma, Continuous-Time Markov Decision Processes: Theory and Applications, Springer-Verlag, Berlin, 2009.
![]() ![]() |
|
X. P. Guo
and J. Yang
, A new condition and approach for zero-sum stochastic games with average payoffs, Stochastic Analysis and Applications, 26 (2008)
, 537-561.
doi: 10.1080/07362990802007095.![]() ![]() ![]() |
|
X. P. Guo
, P. Shi
and W. P. Zhu
, Strong average optimality for controlled nonhomogeneous Markov chains, Stochastic Analysis and Applications, 19 (2001)
, 115-134.
doi: 10.1081/SAP-100001186.![]() ![]() ![]() |
|
O. Hernández-Lerma and J. B. Lasserre, Discrete-time Markov Control Processes, Basic optimality criteria, Springer-Verlag, New York, 1996.
![]() ![]() |
|
O. Hernández-Lerma and J. B. Lasserre, Further Topics on Discrete-Time Markov Control Processes, Springer-Verlag, New York, 1999.
![]() ![]() |
|
Y. H. Huang
and X. P. Guo
, Optimal risk probability for first passage models in semi-Markov decision processes, Journal Mathematical Analysis Applications, 359 (2009)
, 404-420.
doi: 10.1016/j.jmaa.2009.05.058.![]() ![]() ![]() |
|
Y. H. Huang
, X. P. Guo
and X. Y. Song
, Performance analysis for controlled semi-Markov systems with application to maintenance, Journal of Optimization Theory and Applications, 150 (2011)
, 395-415.
doi: 10.1007/s10957-011-9813-7.![]() ![]() ![]() |
|
Y. H. Huang
and X. P. Guo
, Finite horizon semi-Markov decision processes with application to maintenance systems, European Journal Operations Research, 212 (2011)
, 131-140.
doi: 10.1016/j.ejor.2011.01.027.![]() ![]() ![]() |
|
Y. H. Huang
, X. P. Guo
and Z. F. Li
, Minimum risk probability for finite horizon semi-Markov decision processes, Journal Mathematical Analysis Applications, 402 (2013)
, 378-391.
doi: 10.1016/j.jmaa.2013.01.021.![]() ![]() ![]() |
|
Y. H. Huang
and X. P. Guo
, Mean-variance problems for finite horizon semi-Markov decision processes, Applications Mathematical Optimization, 72 (2015)
, 233-259.
doi: 10.1007/s00245-014-9278-9.![]() ![]() ![]() |
|
N. Limnios and G. Oprisan, Semi-Markov Processes and Reliability, Birkhäuser Boston, Inc., Boston, MA, 2001.
![]() ![]() |
|
J. Y. Liu
and S. M. Huang
, Markov decision processes with distribution function criterion of first-passage time, Applications Mathematical Optimization, 43 (2001)
, 187-201.
doi: 10.1007/s00245-001-0007-9.![]() ![]() ![]() |
|
P. M. Madhani
, Rebalancing fixed and variable pay in a sales organization: A business cycle perspective, Compensation Benefits Review, 42 (2010)
, 179-189.
doi: 10.1177/0886368709359668.![]() ![]() |
|
J. W. Mamer
, Successive approximations for finite horizon semi-Markov decision processes with application to asset liquidation, Oper. Res., 34 (1986)
, 638-644.
doi: 10.1287/opre.34.4.638.![]() ![]() ![]() |
|
Y. Ohtsubo
, Minimizing risk models in stochastic shortest path problems, Mathematical Methods of Operations Research, 57 (2003)
, 79-88.
doi: 10.1007/s001860200246.![]() ![]() ![]() |
|
Y. Ohtsubo
, Optimal threshold probability in undiscounted Markov decision processes with a target set, Appl. Math. Comput., 149 (2004)
, 519-532.
doi: 10.1016/S0096-3003(03)00158-9.![]() ![]() ![]() |
|
M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming, John Wiley & Sons, Inc., New York, 1994.
![]() ![]() |
|
C. Ruhm
, Are recessions good for your health?, Quarterly Journal of Economics, 115 (2000)
, 617-650.
doi: 10.3386/w5570.![]() ![]() |
|
M. Sakaguchi
and Y. Ohtsubo
, Markov decision processes associated with two threshold probability criteria, Journal Control Theory Applications, 11 (2013)
, 548-557.
doi: 10.1007/s11768-013-2194-8.![]() ![]() ![]() |
|
Q. D. Wei
and X. P. Guo
, New average optimality conditions for semi-Markov decision processes in Borel spaces, Journal of Optimization Theory and Applications, 153 (2012)
, 709-732.
doi: 10.1007/s10957-012-9986-8.![]() ![]() ![]() |
|
D. J. White
, Minimising a threshold probability in discounted Markov decision processes, J. Math. Anal. Appl., 173 (1993)
, 634-646.
doi: 10.1006/jmaa.1993.1093.![]() ![]() ![]() |
|
Y. H. Wu
, Bounds for the ruin probability under a Markovian modulated risk model, Communications in statistics Stochastic Models, 15 (1999)
, 125-136.
doi: 10.1080/15326349908807529.![]() ![]() ![]() |
|
S. X. Yu
, Y. L. Lin
and P. F. Yan
, Optimization models for the first arrival target distribution function in discrete time, J. Math. Anal. Appl., 225 (1998)
, 193-223.
doi: 10.1006/jmaa.1998.6015.![]() ![]() ![]() |
The function
The function
The function
The function
The function