-
Previous Article
Local completeness, Pareto efficiency and Mackey Bishop-Phelps cones
- JDG Home
- This Issue
- Next Article
The value of a minimax problem involving impulse control
Université Ibn Zohr, Equipe. Aide à la decision, ENSA, B.P. 1136, Agadir, Maroc |
We consider the minimax impulse control problem in finite horizon, when the cost functions are positive and not bounded from below with a strictly positive constant. We show existence of value function of the problem. Moreover, the value function is characterized as the unique viscosity solution of Hamilton-Jacobi-Bellman-Isaacs equation. This problem is in relation with an application in mathematical finance.
References:
[1] |
V. I. Arnold, Ordinary Differential Equations, Springer, New York, 1992. Google Scholar |
[2] |
G. Barles,
Deterministic impulse control problems, SIAM J. Control Optim., 23 (1985), 419-432.
doi: 10.1137/0323027. |
[3] |
E. N. Barron, L. C. Evans and R. Jensen,
Viscosity solutions of Isaaes' equations and differential games with Lipschitz controls, J Differential Equations, 53 (1984), 213-233.
doi: 10.1016/0022-0396(84)90040-8. |
[4] |
A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Bordes, Paris, 1984. Google Scholar |
[5] |
P. Bernhard,
A robust control approach to option pricing including transaction costs, Annals of the ISDG., 7 (2005), 391-416.
doi: 10.1007/0-8176-4429-6_22. |
[6] |
P. Bernhard, N. El Farouq and S. Thiery,
An impulsive differential game arising in finance with interesting singularities, Annals of the ISDG., 8 (2006), 335-363.
doi: 10.1007/0-8176-4501-2_18. |
[7] |
G. Bertola, W. Runggaldier and K. Yasuda,
On classical and restricted impulse stochastic control for the exchange rate, Appl Math Optim., 74 (2016), 423-454.
doi: 10.1007/s00245-015-9320-6. |
[8] |
I. Capuzzo-Dolcetta and L. C. Evans,
Optimal switching for ordinary differential equations, SIAM J. Control Optim., 22 (1984), 143-161.
doi: 10.1137/0322011. |
[9] |
M. Crandall, H. Ishii and P. L. Lions,
User s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
S. Dharmatti and A. J. Shaiju,
Infinite dimensional differential games with hybrid controls, Proc. Indian Acad. Sci. Math., 117 (2007), 233-257.
doi: 10.1007/s12044-007-0019-8. |
[11] |
S. Dharmatti and M. Ramaswamy,
Zero-sum differential games involving hybrid controls, J. Optim. Theory Appl., 128 (2006), 75-102.
doi: 10.1007/s10957-005-7558-x. |
[12] |
B. El Asri,
Optimal multi-modes switching problem in infinite horizon, Stochastics and Dynamics, 10 (2010), 231-261.
doi: 10.1142/S0219493710002930. |
[13] |
B. El Asri,
Deterministic minimax impulse control in finite horizon: The viscosity solution approach, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 63-77.
doi: 10.1051/cocv/2011200. |
[14] |
B. El Asri,
Stochastic optimal multi-modes switching with a viscosity solution approach, Stochastic Processes and their Applications, 123 (2013), 579-602.
doi: 10.1016/j.spa.2012.09.007. |
[15] |
B. EL Asri and S. Mazid, Zero-sum stochastic differential game in finite horizon involving impulse controls, Appl Math Optim., (2018), 1-33.
doi: 10.1007/s00245-018-9529-2. |
[16] |
B. El Asri and S. Mazid, Stochastic differential switching game in infinite horizon, In arXiv preprint, 2018. Google Scholar |
[17] |
N. El Farouq, G. Barles and P. Bernhard,
Deterministic minimax impulse control, Appl Math Optim., 61 (2010), 353-378.
doi: 10.1007/s00245-009-9090-0. |
[18] |
L. C. Evans and P. E. Souganidis,
Differential games and representation formulas for the solution of Hamilton-Jacobi-Isaacs equations, Indiana Univ. J. Math., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040. |
[19] |
W. H. Fleming,
The convergence problem for differential games, Ⅱ., Ann. Math. Study, 52 (1964), 195-210.
|
[20] |
P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982. |
[21] |
P. L. Lions and P. E. Souganidis,
Differential games, optimal control and directional derivatives of viscosity solutions of Bellman s and Isaacs equations, SIAM J. Control Optim., 23 (1985), 566-583.
doi: 10.1137/0323036. |
[22] |
A. J. Shaiju and S. Dharmatti,
Differential games with continuous, switching and impulse controls, Nonlinear Anal., 63 (2005), 23-41.
doi: 10.1016/j.na.2005.04.002. |
[23] |
P. E. Souganidis,
Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. Theory Methods Appl., 9 (1985), 217-257.
doi: 10.1016/0362-546X(85)90062-8. |
[24] |
J. M. Yong,
Systems governed by ordinary differential equations with continuous, switching and impulse controls, Appl Math Opti., 20 (1989), 223-235.
doi: 10.1007/BF01447655. |
[25] |
J. M. Yong,
Optimal switching and impulse controls for distributed parameter systems, Systems Sci Math Sci., 2 (1989), 137-160.
|
[26] |
J. M. Yong,
Differential games with switching strategies, J Math Anal Appl., 145 (1990), 455-469.
doi: 10.1016/0022-247X(90)90413-A. |
[27] |
J. M. Yong,
A zero-sum differential game in a finite duration with switching strategies, SIAM J Control Optim., 28 (1990), 1234-1250.
doi: 10.1137/0328066. |
[28] |
J. M. Yong,
Zero-sum differential games involving impulse controls, Appl.Math. Optim., 29 (1994), 243-261.
doi: 10.1007/BF01189477. |
show all references
References:
[1] |
V. I. Arnold, Ordinary Differential Equations, Springer, New York, 1992. Google Scholar |
[2] |
G. Barles,
Deterministic impulse control problems, SIAM J. Control Optim., 23 (1985), 419-432.
doi: 10.1137/0323027. |
[3] |
E. N. Barron, L. C. Evans and R. Jensen,
Viscosity solutions of Isaaes' equations and differential games with Lipschitz controls, J Differential Equations, 53 (1984), 213-233.
doi: 10.1016/0022-0396(84)90040-8. |
[4] |
A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Bordes, Paris, 1984. Google Scholar |
[5] |
P. Bernhard,
A robust control approach to option pricing including transaction costs, Annals of the ISDG., 7 (2005), 391-416.
doi: 10.1007/0-8176-4429-6_22. |
[6] |
P. Bernhard, N. El Farouq and S. Thiery,
An impulsive differential game arising in finance with interesting singularities, Annals of the ISDG., 8 (2006), 335-363.
doi: 10.1007/0-8176-4501-2_18. |
[7] |
G. Bertola, W. Runggaldier and K. Yasuda,
On classical and restricted impulse stochastic control for the exchange rate, Appl Math Optim., 74 (2016), 423-454.
doi: 10.1007/s00245-015-9320-6. |
[8] |
I. Capuzzo-Dolcetta and L. C. Evans,
Optimal switching for ordinary differential equations, SIAM J. Control Optim., 22 (1984), 143-161.
doi: 10.1137/0322011. |
[9] |
M. Crandall, H. Ishii and P. L. Lions,
User s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
S. Dharmatti and A. J. Shaiju,
Infinite dimensional differential games with hybrid controls, Proc. Indian Acad. Sci. Math., 117 (2007), 233-257.
doi: 10.1007/s12044-007-0019-8. |
[11] |
S. Dharmatti and M. Ramaswamy,
Zero-sum differential games involving hybrid controls, J. Optim. Theory Appl., 128 (2006), 75-102.
doi: 10.1007/s10957-005-7558-x. |
[12] |
B. El Asri,
Optimal multi-modes switching problem in infinite horizon, Stochastics and Dynamics, 10 (2010), 231-261.
doi: 10.1142/S0219493710002930. |
[13] |
B. El Asri,
Deterministic minimax impulse control in finite horizon: The viscosity solution approach, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 63-77.
doi: 10.1051/cocv/2011200. |
[14] |
B. El Asri,
Stochastic optimal multi-modes switching with a viscosity solution approach, Stochastic Processes and their Applications, 123 (2013), 579-602.
doi: 10.1016/j.spa.2012.09.007. |
[15] |
B. EL Asri and S. Mazid, Zero-sum stochastic differential game in finite horizon involving impulse controls, Appl Math Optim., (2018), 1-33.
doi: 10.1007/s00245-018-9529-2. |
[16] |
B. El Asri and S. Mazid, Stochastic differential switching game in infinite horizon, In arXiv preprint, 2018. Google Scholar |
[17] |
N. El Farouq, G. Barles and P. Bernhard,
Deterministic minimax impulse control, Appl Math Optim., 61 (2010), 353-378.
doi: 10.1007/s00245-009-9090-0. |
[18] |
L. C. Evans and P. E. Souganidis,
Differential games and representation formulas for the solution of Hamilton-Jacobi-Isaacs equations, Indiana Univ. J. Math., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040. |
[19] |
W. H. Fleming,
The convergence problem for differential games, Ⅱ., Ann. Math. Study, 52 (1964), 195-210.
|
[20] |
P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982. |
[21] |
P. L. Lions and P. E. Souganidis,
Differential games, optimal control and directional derivatives of viscosity solutions of Bellman s and Isaacs equations, SIAM J. Control Optim., 23 (1985), 566-583.
doi: 10.1137/0323036. |
[22] |
A. J. Shaiju and S. Dharmatti,
Differential games with continuous, switching and impulse controls, Nonlinear Anal., 63 (2005), 23-41.
doi: 10.1016/j.na.2005.04.002. |
[23] |
P. E. Souganidis,
Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. Theory Methods Appl., 9 (1985), 217-257.
doi: 10.1016/0362-546X(85)90062-8. |
[24] |
J. M. Yong,
Systems governed by ordinary differential equations with continuous, switching and impulse controls, Appl Math Opti., 20 (1989), 223-235.
doi: 10.1007/BF01447655. |
[25] |
J. M. Yong,
Optimal switching and impulse controls for distributed parameter systems, Systems Sci Math Sci., 2 (1989), 137-160.
|
[26] |
J. M. Yong,
Differential games with switching strategies, J Math Anal Appl., 145 (1990), 455-469.
doi: 10.1016/0022-247X(90)90413-A. |
[27] |
J. M. Yong,
A zero-sum differential game in a finite duration with switching strategies, SIAM J Control Optim., 28 (1990), 1234-1250.
doi: 10.1137/0328066. |
[28] |
J. M. Yong,
Zero-sum differential games involving impulse controls, Appl.Math. Optim., 29 (1994), 243-261.
doi: 10.1007/BF01189477. |
[1] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[2] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[3] |
Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021020 |
[4] |
Gheorghe Craciun, Abhishek Deshpande, Hyejin Jenny Yeon. Quasi-toric differential inclusions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2343-2359. doi: 10.3934/dcdsb.2020181 |
[5] |
Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021011 |
[6] |
Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021072 |
[7] |
Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313 |
[8] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[9] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[10] |
Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021069 |
[11] |
Jun Moon. Linear-quadratic mean-field type stackelberg differential games for stochastic jump-diffusion systems. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021026 |
[12] |
J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008 |
[13] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[14] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[15] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[16] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[17] |
Yi Gao, Rui Li, Yingjing Shi, Li Xiao. Design of path planning and tracking control of quadrotor. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021063 |
[18] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[19] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[20] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]