-
Previous Article
Local completeness, Pareto efficiency and Mackey Bishop-Phelps cones
- JDG Home
- This Issue
- Next Article
The value of a minimax problem involving impulse control
Université Ibn Zohr, Equipe. Aide à la decision, ENSA, B.P. 1136, Agadir, Maroc |
We consider the minimax impulse control problem in finite horizon, when the cost functions are positive and not bounded from below with a strictly positive constant. We show existence of value function of the problem. Moreover, the value function is characterized as the unique viscosity solution of Hamilton-Jacobi-Bellman-Isaacs equation. This problem is in relation with an application in mathematical finance.
References:
[1] |
V. I. Arnold, Ordinary Differential Equations, Springer, New York, 1992. |
[2] |
G. Barles,
Deterministic impulse control problems, SIAM J. Control Optim., 23 (1985), 419-432.
doi: 10.1137/0323027. |
[3] |
E. N. Barron, L. C. Evans and R. Jensen,
Viscosity solutions of Isaaes' equations and differential games with Lipschitz controls, J Differential Equations, 53 (1984), 213-233.
doi: 10.1016/0022-0396(84)90040-8. |
[4] |
A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Bordes, Paris, 1984. |
[5] |
P. Bernhard,
A robust control approach to option pricing including transaction costs, Annals of the ISDG., 7 (2005), 391-416.
doi: 10.1007/0-8176-4429-6_22. |
[6] |
P. Bernhard, N. El Farouq and S. Thiery,
An impulsive differential game arising in finance with interesting singularities, Annals of the ISDG., 8 (2006), 335-363.
doi: 10.1007/0-8176-4501-2_18. |
[7] |
G. Bertola, W. Runggaldier and K. Yasuda,
On classical and restricted impulse stochastic control for the exchange rate, Appl Math Optim., 74 (2016), 423-454.
doi: 10.1007/s00245-015-9320-6. |
[8] |
I. Capuzzo-Dolcetta and L. C. Evans,
Optimal switching for ordinary differential equations, SIAM J. Control Optim., 22 (1984), 143-161.
doi: 10.1137/0322011. |
[9] |
M. Crandall, H. Ishii and P. L. Lions,
User s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
S. Dharmatti and A. J. Shaiju,
Infinite dimensional differential games with hybrid controls, Proc. Indian Acad. Sci. Math., 117 (2007), 233-257.
doi: 10.1007/s12044-007-0019-8. |
[11] |
S. Dharmatti and M. Ramaswamy,
Zero-sum differential games involving hybrid controls, J. Optim. Theory Appl., 128 (2006), 75-102.
doi: 10.1007/s10957-005-7558-x. |
[12] |
B. El Asri,
Optimal multi-modes switching problem in infinite horizon, Stochastics and Dynamics, 10 (2010), 231-261.
doi: 10.1142/S0219493710002930. |
[13] |
B. El Asri,
Deterministic minimax impulse control in finite horizon: The viscosity solution approach, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 63-77.
doi: 10.1051/cocv/2011200. |
[14] |
B. El Asri,
Stochastic optimal multi-modes switching with a viscosity solution approach, Stochastic Processes and their Applications, 123 (2013), 579-602.
doi: 10.1016/j.spa.2012.09.007. |
[15] |
B. EL Asri and S. Mazid, Zero-sum stochastic differential game in finite horizon involving impulse controls, Appl Math Optim., (2018), 1-33.
doi: 10.1007/s00245-018-9529-2. |
[16] |
B. El Asri and S. Mazid, Stochastic differential switching game in infinite horizon, In arXiv preprint, 2018. |
[17] |
N. El Farouq, G. Barles and P. Bernhard,
Deterministic minimax impulse control, Appl Math Optim., 61 (2010), 353-378.
doi: 10.1007/s00245-009-9090-0. |
[18] |
L. C. Evans and P. E. Souganidis,
Differential games and representation formulas for the solution of Hamilton-Jacobi-Isaacs equations, Indiana Univ. J. Math., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040. |
[19] |
W. H. Fleming,
The convergence problem for differential games, Ⅱ., Ann. Math. Study, 52 (1964), 195-210.
|
[20] |
P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982. |
[21] |
P. L. Lions and P. E. Souganidis,
Differential games, optimal control and directional derivatives of viscosity solutions of Bellman s and Isaacs equations, SIAM J. Control Optim., 23 (1985), 566-583.
doi: 10.1137/0323036. |
[22] |
A. J. Shaiju and S. Dharmatti,
Differential games with continuous, switching and impulse controls, Nonlinear Anal., 63 (2005), 23-41.
doi: 10.1016/j.na.2005.04.002. |
[23] |
P. E. Souganidis,
Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. Theory Methods Appl., 9 (1985), 217-257.
doi: 10.1016/0362-546X(85)90062-8. |
[24] |
J. M. Yong,
Systems governed by ordinary differential equations with continuous, switching and impulse controls, Appl Math Opti., 20 (1989), 223-235.
doi: 10.1007/BF01447655. |
[25] |
J. M. Yong,
Optimal switching and impulse controls for distributed parameter systems, Systems Sci Math Sci., 2 (1989), 137-160.
|
[26] |
J. M. Yong,
Differential games with switching strategies, J Math Anal Appl., 145 (1990), 455-469.
doi: 10.1016/0022-247X(90)90413-A. |
[27] |
J. M. Yong,
A zero-sum differential game in a finite duration with switching strategies, SIAM J Control Optim., 28 (1990), 1234-1250.
doi: 10.1137/0328066. |
[28] |
J. M. Yong,
Zero-sum differential games involving impulse controls, Appl.Math. Optim., 29 (1994), 243-261.
doi: 10.1007/BF01189477. |
show all references
References:
[1] |
V. I. Arnold, Ordinary Differential Equations, Springer, New York, 1992. |
[2] |
G. Barles,
Deterministic impulse control problems, SIAM J. Control Optim., 23 (1985), 419-432.
doi: 10.1137/0323027. |
[3] |
E. N. Barron, L. C. Evans and R. Jensen,
Viscosity solutions of Isaaes' equations and differential games with Lipschitz controls, J Differential Equations, 53 (1984), 213-233.
doi: 10.1016/0022-0396(84)90040-8. |
[4] |
A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Bordes, Paris, 1984. |
[5] |
P. Bernhard,
A robust control approach to option pricing including transaction costs, Annals of the ISDG., 7 (2005), 391-416.
doi: 10.1007/0-8176-4429-6_22. |
[6] |
P. Bernhard, N. El Farouq and S. Thiery,
An impulsive differential game arising in finance with interesting singularities, Annals of the ISDG., 8 (2006), 335-363.
doi: 10.1007/0-8176-4501-2_18. |
[7] |
G. Bertola, W. Runggaldier and K. Yasuda,
On classical and restricted impulse stochastic control for the exchange rate, Appl Math Optim., 74 (2016), 423-454.
doi: 10.1007/s00245-015-9320-6. |
[8] |
I. Capuzzo-Dolcetta and L. C. Evans,
Optimal switching for ordinary differential equations, SIAM J. Control Optim., 22 (1984), 143-161.
doi: 10.1137/0322011. |
[9] |
M. Crandall, H. Ishii and P. L. Lions,
User s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[10] |
S. Dharmatti and A. J. Shaiju,
Infinite dimensional differential games with hybrid controls, Proc. Indian Acad. Sci. Math., 117 (2007), 233-257.
doi: 10.1007/s12044-007-0019-8. |
[11] |
S. Dharmatti and M. Ramaswamy,
Zero-sum differential games involving hybrid controls, J. Optim. Theory Appl., 128 (2006), 75-102.
doi: 10.1007/s10957-005-7558-x. |
[12] |
B. El Asri,
Optimal multi-modes switching problem in infinite horizon, Stochastics and Dynamics, 10 (2010), 231-261.
doi: 10.1142/S0219493710002930. |
[13] |
B. El Asri,
Deterministic minimax impulse control in finite horizon: The viscosity solution approach, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 63-77.
doi: 10.1051/cocv/2011200. |
[14] |
B. El Asri,
Stochastic optimal multi-modes switching with a viscosity solution approach, Stochastic Processes and their Applications, 123 (2013), 579-602.
doi: 10.1016/j.spa.2012.09.007. |
[15] |
B. EL Asri and S. Mazid, Zero-sum stochastic differential game in finite horizon involving impulse controls, Appl Math Optim., (2018), 1-33.
doi: 10.1007/s00245-018-9529-2. |
[16] |
B. El Asri and S. Mazid, Stochastic differential switching game in infinite horizon, In arXiv preprint, 2018. |
[17] |
N. El Farouq, G. Barles and P. Bernhard,
Deterministic minimax impulse control, Appl Math Optim., 61 (2010), 353-378.
doi: 10.1007/s00245-009-9090-0. |
[18] |
L. C. Evans and P. E. Souganidis,
Differential games and representation formulas for the solution of Hamilton-Jacobi-Isaacs equations, Indiana Univ. J. Math., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040. |
[19] |
W. H. Fleming,
The convergence problem for differential games, Ⅱ., Ann. Math. Study, 52 (1964), 195-210.
|
[20] |
P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982. |
[21] |
P. L. Lions and P. E. Souganidis,
Differential games, optimal control and directional derivatives of viscosity solutions of Bellman s and Isaacs equations, SIAM J. Control Optim., 23 (1985), 566-583.
doi: 10.1137/0323036. |
[22] |
A. J. Shaiju and S. Dharmatti,
Differential games with continuous, switching and impulse controls, Nonlinear Anal., 63 (2005), 23-41.
doi: 10.1016/j.na.2005.04.002. |
[23] |
P. E. Souganidis,
Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. Theory Methods Appl., 9 (1985), 217-257.
doi: 10.1016/0362-546X(85)90062-8. |
[24] |
J. M. Yong,
Systems governed by ordinary differential equations with continuous, switching and impulse controls, Appl Math Opti., 20 (1989), 223-235.
doi: 10.1007/BF01447655. |
[25] |
J. M. Yong,
Optimal switching and impulse controls for distributed parameter systems, Systems Sci Math Sci., 2 (1989), 137-160.
|
[26] |
J. M. Yong,
Differential games with switching strategies, J Math Anal Appl., 145 (1990), 455-469.
doi: 10.1016/0022-247X(90)90413-A. |
[27] |
J. M. Yong,
A zero-sum differential game in a finite duration with switching strategies, SIAM J Control Optim., 28 (1990), 1234-1250.
doi: 10.1137/0328066. |
[28] |
J. M. Yong,
Zero-sum differential games involving impulse controls, Appl.Math. Optim., 29 (1994), 243-261.
doi: 10.1007/BF01189477. |
[1] |
Yusuke Murase, Atsushi Kadoya, Nobuyuki Kenmochi. Optimal control problems for quasi-variational inequalities and its numerical approximation. Conference Publications, 2011, 2011 (Special) : 1101-1110. doi: 10.3934/proc.2011.2011.1101 |
[2] |
Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial and Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165 |
[3] |
Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523 |
[4] |
Lori Badea. Multigrid methods for some quasi-variational inequalities. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1457-1471. doi: 10.3934/dcdss.2013.6.1457 |
[5] |
Yusuke Murase, Risei Kano, Nobuyuki Kenmochi. Elliptic Quasi-variational inequalities and applications. Conference Publications, 2009, 2009 (Special) : 583-591. doi: 10.3934/proc.2009.2009.583 |
[6] |
Yurii Nesterov, Laura Scrimali. Solving strongly monotone variational and quasi-variational inequalities. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1383-1396. doi: 10.3934/dcds.2011.31.1383 |
[7] |
Alain Bensoussan, John Liu, Jiguang Yuan. Singular control and impulse control: A common approach. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 27-57. doi: 10.3934/dcdsb.2010.13.27 |
[8] |
Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331 |
[9] |
Nobuyuki Kenmochi. Parabolic quasi-variational diffusion problems with gradient constraints. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 423-438. doi: 10.3934/dcdss.2013.6.423 |
[10] |
Laura Scrimali. Mixed behavior network equilibria and quasi-variational inequalities. Journal of Industrial and Management Optimization, 2009, 5 (2) : 363-379. doi: 10.3934/jimo.2009.5.363 |
[11] |
Piernicola Bettiol. State constrained $L^\infty$ optimal control problems interpreted as differential games. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3989-4017. doi: 10.3934/dcds.2015.35.3989 |
[12] |
Weihua Ruan. Markovian strategies for piecewise deterministic differential games with continuous and impulse controls. Journal of Dynamics and Games, 2019, 6 (4) : 337-366. doi: 10.3934/jdg.2019022 |
[13] |
Kuang Huang, Xuan Di, Qiang Du, Xi Chen. A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4869-4903. doi: 10.3934/dcdsb.2020131 |
[14] |
Samir Adly, Tahar Haddad. On evolution quasi-variational inequalities and implicit state-dependent sweeping processes. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1791-1801. doi: 10.3934/dcdss.2020105 |
[15] |
Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control and Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365 |
[16] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[17] |
G. M. de Araújo, S. B. de Menezes. On a variational inequality for the Navier-Stokes operator with variable viscosity. Communications on Pure and Applied Analysis, 2006, 5 (3) : 583-596. doi: 10.3934/cpaa.2006.5.583 |
[18] |
T. Tachim Medjo, Louis Tcheugoue Tebou. Robust control problems in fluid flows. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 437-463. doi: 10.3934/dcds.2005.12.437 |
[19] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1115-1132. doi: 10.3934/jimo.2021011 |
[20] |
Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial and Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]