October  2019, 6(4): 315-335. doi: 10.3934/jdg.2019021

Evolutionary, mean-field and pressure-resistance game modelling of networks security

1. 

Centre for Complexity Science, University of Warwick, Coventry, CV4 7AL, UK

2. 

Department of Statistics, University of Warwick, Associate Member of IPI RAN, Coventry, CV4 7AL, UK

Received  August 2019 Revised  August 2019 Published  October 2019

The recently developed mean-field game models of corruption and bot-net defence in cyber-security, the evolutionary game approach to inspection and corruption, and the pressure-resistance game element, can be combined under an extended model of interaction of large number of indistinguishable small players against a major player, with focus on the study of security and crime prevention. In this paper we introduce such a general framework for complex interaction in network structures of many players, that incorporates individual decision making inside the environment (the mean-field game component), binary interaction (the evolutionary game component), and the interference of a principal player (the pressure-resistance game component). To perform concrete calculations with this overall complicated model, we suggest working, in sequence, in three basic asymptotic regimes; fast execution of personal decisions, small rates of binary interactions, and small payoff discounting in time.

Citation: Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics and Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021
References:
[1]

R. J. Aumann, Markets with a continuum of traders, Econometrica: Journal of the Econometric Society, 32 (1964), 39-50.  doi: 10.2307/1913732.

[2]

R. BasnaA. Hilbert and V. N. Kolokoltsov, An epsilon-Nash equilibrium for non-linear Markov games of mean-field-type on finite spaces, Communications on Stochastic Analysis, 8 (2014), 449-468.  doi: 10.31390/cosa.8.4.02.

[3]

D. BausoH. Tembine and T. Basar, Robust mean field games, Dynamic Games and Applications, 6 (2016), 277-303.  doi: 10.1007/s13235-015-0160-4.

[4]

A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory, SpringerBriefs in Mathematics. Springer, New York, 2013. doi: 10.1007/978-1-4614-8508-7.

[5]

A. BensoussanM. H. M. Chau and S. C. P. Yam, Mean field games with a dominating player, Applied Mathematics & Optimization, 74 (2016), 91-128.  doi: 10.1007/s00245-015-9309-1.

[6]

J. Bergin and D. Bernhardt, Anonymous sequential games with aggregate uncertainty, Journal of Mathematical Economics, 21 (1992), 543-562.  doi: 10.1016/0304-4068(92)90026-4.

[7]

P. E. Caines, Mean field games, Encyclopedia of Systems and Control, (2013), 1–6.

[8]

M. J. CantyD. Rothenstein and R. Avenhaus, Timely inspection and deterrence, European Journal of Operational Research, 131 (2001), 208-223.  doi: 10.1016/S0377-2217(00)00082-5.

[9]

P. Cardaliaguet, Notes on mean field games (p. 120), Technical report, 2010.

[10]

R. Carmona and F. Delarue, Probabilistic analysis of mean-field games, SIAM Journal on Control and Optimization, 51 (2013), 2705-2734.  doi: 10.1137/120883499.

[11]

R. Carmona and X. Zhu, A probabilistic approach to mean field games with major and minor players, The Annals of Applied Probability, 26 (2016), 1535-1580.  doi: 10.1214/15-AAP1125.

[12]

P. DubeyA. Mas-Colell and M. Shubik, Efficiency properties of strategies market games: An axiomatic approach, Journal of Economic Theory, 22 (1980), 339-362. 

[13]

D. Friedman, Evolutionary games in economics, Econometrica: Journal of the Econometric Societ, 59 (1991), 637-666.  doi: 10.2307/2938222.

[14]

D. Friedman, On economic applications of evolutionary game theory, Journal of Evolutionary Economics, 8 (1998), 15-43. 

[15]

H. Gintis, Game Theory Evolving: A Problem-centered Introduction to Modeling Strategic Behavior, Second edition. Princeton University Press, Princeton, NJ, 2009.

[16]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, Journal de Math'e Matiques Pures et Appliqu'ees, 93 (2010), 308–328. doi: 10.1016/j.matpur.2009.10.010.

[17]

D. A. GomesJ. Mohr and R. R. Souza, Continuous time finite state mean field games, Applied Mathematics & Optimization, 68 (2013), 99-143.  doi: 10.1007/s00245-013-9202-8.

[18]

D. Gomes, R. M. Velho and M. T. Wolfram, Socio-economic applications of finite state mean field games, Phil. Trans. R. Soc. A, 372 (2014), 20130405, 18pp. doi: 10.1098/rsta.2013.0405.

[19]

D. A. Gomes and J. Saude, Mean field games models–a brief survey, Dynamic Games and Applications, 4 (2014), 110-154.  doi: 10.1007/s13235-013-0099-2.

[20]

D. HelbingD. BrockmannT. ChadefauxK. DonnayU. BlankeO. Woolley-MezaM. MoussaidA. JohanssonJ. KrauseS. Schutte and M. Perc, Saving human lives: What complexity science and information systems can contribute, Journal of Statistical Physics, 158 (2015), 735-781.  doi: 10.1007/s10955-014-1024-9.

[21]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bulletin of the American Mathematical Society, 40 (2003), 479-519.  doi: 10.1090/S0273-0979-03-00988-1.

[22]

M. HuangR. P. Malham'e and P. E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Communications in Information & Systems, 6 (2006), 221-252.  doi: 10.4310/CIS.2006.v6.n3.a5.

[23]

M. Huang, Large-population LQG games involving a major player: The Nash certainty equivalence principle, SIAM Journal on Control and Optimization, 48 (2010), 3318-3353.  doi: 10.1137/080735370.

[24]

B. Jovanovic and R. W. Rosenthal, Anonymous sequential games, Journal of Mathematical Economics, 17 (1988), 77-87.  doi: 10.1016/0304-4068(88)90029-8.

[25]

M. I. Kamien and N. L. Schwartz, Dynamic Optimisation. The Calculus of Variations and Optimal Control in Economics and Management, Second edition. Advanced Textbooks in Economics, 31. North-Holland Publishing Co., Amsterdam, 1991.

[26]

S. Katsikas, V. Kolokoltsov and W. Yang, Evolutionary inspection and corruption games, Games, 7 (2016), Paper No. 31, 25 pp. doi: 10.3390/g7040031.

[27]

V. N. Kolokoltsov, Nonlinear Markov Games, Proceedings of the 19th MTNS Symposium, 2010.

[28]

V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations (Vol. 182), Cambridge University Press, 2010.

[29]

V. Kolokoltsov and W. Yang, Turnpike theorems for Markov games, Dynamic Games and Applications, 2 (2012), 294-312.  doi: 10.1007/s13235-012-0047-6.

[30]

V. N. Kolokoltsov, Nonlinear Markov games on a finite state space (mean-field and binary interactions), International Journal of Statistics and Probability, 1 (2012).

[31]

V. N. Kolokoltsov, The evolutionary game of pressure (or interference), resistance and collaboration, Math. Oper. Res., 42 (2017), 915–944, arXiv: 1412.1269, Available online: https://arXiv.org/abs/1412.1269(accessedon3December2014) (toappearinMOR(MathematicsofOperartionResearch)) doi: 10.1287/moor.2016.0838.

[32]

V. N. Kolokoltsov and O. A. Malafeyev, Mean-field-game model of corruption, Dynamic Games and Applications, 7 (2017), 34-47.  doi: 10.1007/s13235-015-0175-x.

[33]

V. N. Kolokoltsov and A. Bensoussan, Mean-field-game model for Botnet defense in Cyber-security, Applied Mathematics & Optimization, 74 (2016), 669-692.  doi: 10.1007/s00245-016-9389-6.

[34]

J. M. Lasry and P. L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.

[35]

M. R. D'Orsogna and M. Perc, Statistical physics of crime: A review, Physics of Life Reviews, 12 (2015), 1-21. 

[36]

M. PercJ. J. JordanD. G. RandZ. WangS. Boccaletti and A. Szolnoki, Statistical physics of human cooperation, Physics Reports, 687 (2017), 1-51.  doi: 10.1016/j.physrep.2017.05.004.

[37]

S. M. Ross, Introduction to Stochastic Dynamic Programming, Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.

[38]

L. Samuelson, Evolution and game theory, The Journal of Economic Perspectives, 16 (2002), 47-66. 

[39]

T. Sandler, Counterterrorism: A game-theoretic analysis, Journal of Conflict Resolution, 49 (2005), 183-200. 

[40]

T. Sandler and D. G. Arce, Terrorism: A game-theoretic approach, Handbook of Defense Economics, 2 (2007), 775-813. 

[41]

T. Sandler and K. Siqueira, Games and terrorism: Recent developments, Simulation & Gaming, 40 (2009), 164-192. 

[42]

G. Szab'o and G. Fath, Evolutionary games on graphs, Physics Reports, 446 (2007), 97-216.  doi: 10.1016/j.physrep.2007.04.004.

[43]

J. M. Smith, Evolution and the theory of games, In Did Darwin Get It Right?, Springer US, (1988), 202–215.

[44]

C. TaylorD. FudenbergA. Sasaki and M. A. Nowak, Evolutionary game dynamics in finite populations, Bulletin of Mathematical Biology, 66 (2004), 1621-1644.  doi: 10.1016/j.bulm.2004.03.004.

[45]

H. Tembine, J. Y. Le Boudec, R. El-Azouzi and E. Altman, Mean field asymptotics of Markov decision evolutionary games and teams, In Game Theory for Networks, 2009. GameNets' 09. International Conference on, IEEE, (2009), 140–150.

[46]

J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, MA, 1995. doi: doi.

[47]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Nonconvex Optimization and its Applications, 80. Springer, New York, 2006.

show all references

References:
[1]

R. J. Aumann, Markets with a continuum of traders, Econometrica: Journal of the Econometric Society, 32 (1964), 39-50.  doi: 10.2307/1913732.

[2]

R. BasnaA. Hilbert and V. N. Kolokoltsov, An epsilon-Nash equilibrium for non-linear Markov games of mean-field-type on finite spaces, Communications on Stochastic Analysis, 8 (2014), 449-468.  doi: 10.31390/cosa.8.4.02.

[3]

D. BausoH. Tembine and T. Basar, Robust mean field games, Dynamic Games and Applications, 6 (2016), 277-303.  doi: 10.1007/s13235-015-0160-4.

[4]

A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory, SpringerBriefs in Mathematics. Springer, New York, 2013. doi: 10.1007/978-1-4614-8508-7.

[5]

A. BensoussanM. H. M. Chau and S. C. P. Yam, Mean field games with a dominating player, Applied Mathematics & Optimization, 74 (2016), 91-128.  doi: 10.1007/s00245-015-9309-1.

[6]

J. Bergin and D. Bernhardt, Anonymous sequential games with aggregate uncertainty, Journal of Mathematical Economics, 21 (1992), 543-562.  doi: 10.1016/0304-4068(92)90026-4.

[7]

P. E. Caines, Mean field games, Encyclopedia of Systems and Control, (2013), 1–6.

[8]

M. J. CantyD. Rothenstein and R. Avenhaus, Timely inspection and deterrence, European Journal of Operational Research, 131 (2001), 208-223.  doi: 10.1016/S0377-2217(00)00082-5.

[9]

P. Cardaliaguet, Notes on mean field games (p. 120), Technical report, 2010.

[10]

R. Carmona and F. Delarue, Probabilistic analysis of mean-field games, SIAM Journal on Control and Optimization, 51 (2013), 2705-2734.  doi: 10.1137/120883499.

[11]

R. Carmona and X. Zhu, A probabilistic approach to mean field games with major and minor players, The Annals of Applied Probability, 26 (2016), 1535-1580.  doi: 10.1214/15-AAP1125.

[12]

P. DubeyA. Mas-Colell and M. Shubik, Efficiency properties of strategies market games: An axiomatic approach, Journal of Economic Theory, 22 (1980), 339-362. 

[13]

D. Friedman, Evolutionary games in economics, Econometrica: Journal of the Econometric Societ, 59 (1991), 637-666.  doi: 10.2307/2938222.

[14]

D. Friedman, On economic applications of evolutionary game theory, Journal of Evolutionary Economics, 8 (1998), 15-43. 

[15]

H. Gintis, Game Theory Evolving: A Problem-centered Introduction to Modeling Strategic Behavior, Second edition. Princeton University Press, Princeton, NJ, 2009.

[16]

D. A. Gomes, J. Mohr and R. R. Souza, Discrete time, finite state space mean field games, Journal de Math'e Matiques Pures et Appliqu'ees, 93 (2010), 308–328. doi: 10.1016/j.matpur.2009.10.010.

[17]

D. A. GomesJ. Mohr and R. R. Souza, Continuous time finite state mean field games, Applied Mathematics & Optimization, 68 (2013), 99-143.  doi: 10.1007/s00245-013-9202-8.

[18]

D. Gomes, R. M. Velho and M. T. Wolfram, Socio-economic applications of finite state mean field games, Phil. Trans. R. Soc. A, 372 (2014), 20130405, 18pp. doi: 10.1098/rsta.2013.0405.

[19]

D. A. Gomes and J. Saude, Mean field games models–a brief survey, Dynamic Games and Applications, 4 (2014), 110-154.  doi: 10.1007/s13235-013-0099-2.

[20]

D. HelbingD. BrockmannT. ChadefauxK. DonnayU. BlankeO. Woolley-MezaM. MoussaidA. JohanssonJ. KrauseS. Schutte and M. Perc, Saving human lives: What complexity science and information systems can contribute, Journal of Statistical Physics, 158 (2015), 735-781.  doi: 10.1007/s10955-014-1024-9.

[21]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bulletin of the American Mathematical Society, 40 (2003), 479-519.  doi: 10.1090/S0273-0979-03-00988-1.

[22]

M. HuangR. P. Malham'e and P. E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Communications in Information & Systems, 6 (2006), 221-252.  doi: 10.4310/CIS.2006.v6.n3.a5.

[23]

M. Huang, Large-population LQG games involving a major player: The Nash certainty equivalence principle, SIAM Journal on Control and Optimization, 48 (2010), 3318-3353.  doi: 10.1137/080735370.

[24]

B. Jovanovic and R. W. Rosenthal, Anonymous sequential games, Journal of Mathematical Economics, 17 (1988), 77-87.  doi: 10.1016/0304-4068(88)90029-8.

[25]

M. I. Kamien and N. L. Schwartz, Dynamic Optimisation. The Calculus of Variations and Optimal Control in Economics and Management, Second edition. Advanced Textbooks in Economics, 31. North-Holland Publishing Co., Amsterdam, 1991.

[26]

S. Katsikas, V. Kolokoltsov and W. Yang, Evolutionary inspection and corruption games, Games, 7 (2016), Paper No. 31, 25 pp. doi: 10.3390/g7040031.

[27]

V. N. Kolokoltsov, Nonlinear Markov Games, Proceedings of the 19th MTNS Symposium, 2010.

[28]

V. N. Kolokoltsov, Nonlinear Markov Processes and Kinetic Equations (Vol. 182), Cambridge University Press, 2010.

[29]

V. Kolokoltsov and W. Yang, Turnpike theorems for Markov games, Dynamic Games and Applications, 2 (2012), 294-312.  doi: 10.1007/s13235-012-0047-6.

[30]

V. N. Kolokoltsov, Nonlinear Markov games on a finite state space (mean-field and binary interactions), International Journal of Statistics and Probability, 1 (2012).

[31]

V. N. Kolokoltsov, The evolutionary game of pressure (or interference), resistance and collaboration, Math. Oper. Res., 42 (2017), 915–944, arXiv: 1412.1269, Available online: https://arXiv.org/abs/1412.1269(accessedon3December2014) (toappearinMOR(MathematicsofOperartionResearch)) doi: 10.1287/moor.2016.0838.

[32]

V. N. Kolokoltsov and O. A. Malafeyev, Mean-field-game model of corruption, Dynamic Games and Applications, 7 (2017), 34-47.  doi: 10.1007/s13235-015-0175-x.

[33]

V. N. Kolokoltsov and A. Bensoussan, Mean-field-game model for Botnet defense in Cyber-security, Applied Mathematics & Optimization, 74 (2016), 669-692.  doi: 10.1007/s00245-016-9389-6.

[34]

J. M. Lasry and P. L. Lions, Mean field games, Japanese Journal of Mathematics, 2 (2007), 229-260.  doi: 10.1007/s11537-007-0657-8.

[35]

M. R. D'Orsogna and M. Perc, Statistical physics of crime: A review, Physics of Life Reviews, 12 (2015), 1-21. 

[36]

M. PercJ. J. JordanD. G. RandZ. WangS. Boccaletti and A. Szolnoki, Statistical physics of human cooperation, Physics Reports, 687 (2017), 1-51.  doi: 10.1016/j.physrep.2017.05.004.

[37]

S. M. Ross, Introduction to Stochastic Dynamic Programming, Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.

[38]

L. Samuelson, Evolution and game theory, The Journal of Economic Perspectives, 16 (2002), 47-66. 

[39]

T. Sandler, Counterterrorism: A game-theoretic analysis, Journal of Conflict Resolution, 49 (2005), 183-200. 

[40]

T. Sandler and D. G. Arce, Terrorism: A game-theoretic approach, Handbook of Defense Economics, 2 (2007), 775-813. 

[41]

T. Sandler and K. Siqueira, Games and terrorism: Recent developments, Simulation & Gaming, 40 (2009), 164-192. 

[42]

G. Szab'o and G. Fath, Evolutionary games on graphs, Physics Reports, 446 (2007), 97-216.  doi: 10.1016/j.physrep.2007.04.004.

[43]

J. M. Smith, Evolution and the theory of games, In Did Darwin Get It Right?, Springer US, (1988), 202–215.

[44]

C. TaylorD. FudenbergA. Sasaki and M. A. Nowak, Evolutionary game dynamics in finite populations, Bulletin of Mathematical Biology, 66 (2004), 1621-1644.  doi: 10.1016/j.bulm.2004.03.004.

[45]

H. Tembine, J. Y. Le Boudec, R. El-Azouzi and E. Altman, Mean field asymptotics of Markov decision evolutionary games and teams, In Game Theory for Networks, 2009. GameNets' 09. International Conference on, IEEE, (2009), 140–150.

[46]

J. W. Weibull, Evolutionary Game Theory, MIT Press, Cambridge, MA, 1995. doi: doi.

[47]

A. J. Zaslavski, Turnpike Properties in the Calculus of Variations and Optimal Control, Nonconvex Optimization and its Applications, 80. Springer, New York, 2006.

Figure 1.  The simplified version of our network: only transitions between neighbours are allowed in $ H $, all transitions are allowed in $ B $, binary interaction occurs only within a common level in $ H $
[1]

René Aïd, Roxana Dumitrescu, Peter Tankov. The entry and exit game in the electricity markets: A mean-field game approach. Journal of Dynamics and Games, 2021, 8 (4) : 331-358. doi: 10.3934/jdg.2021012

[2]

Abd El-Monem A. Megahed, Ebrahim A. Youness, Hebatallah K. Arafat. Optimization method in counter terrorism: Min-Max zero-sum differential game approach. Numerical Algebra, Control and Optimization, 2022  doi: 10.3934/naco.2022013

[3]

Fabio Bagagiolo, Luciano Marzufero. A time-dependent switching mean-field game on networks motivated by optimal visiting problems. Journal of Dynamics and Games, 2022  doi: 10.3934/jdg.2022019

[4]

César Barilla, Guillaume Carlier, Jean-Michel Lasry. A mean field game model for the evolution of cities. Journal of Dynamics and Games, 2021, 8 (3) : 299-329. doi: 10.3934/jdg.2021017

[5]

Fabio Camilli, Francisco Silva. A semi-discrete approximation for a first order mean field game problem. Networks and Heterogeneous Media, 2012, 7 (2) : 263-277. doi: 10.3934/nhm.2012.7.263

[6]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[7]

Shuhua Zhang, Junying Zhao, Ming Yan, Xinyu Wang. Modeling and computation of mean field game with compound carbon abatement mechanisms. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3333-3347. doi: 10.3934/jimo.2020121

[8]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic and Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[9]

Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure and Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981

[10]

Martin Burger, Alexander Lorz, Marie-Therese Wolfram. Balanced growth path solutions of a Boltzmann mean field game model for knowledge growth. Kinetic and Related Models, 2017, 10 (1) : 117-140. doi: 10.3934/krm.2017005

[11]

Elisabetta Carlini, Francisco J. Silva. A semi-Lagrangian scheme for a degenerate second order mean field game system. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4269-4292. doi: 10.3934/dcds.2015.35.4269

[12]

Kuang Huang, Xuan Di, Qiang Du, Xi Chen. A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4869-4903. doi: 10.3934/dcdsb.2020131

[13]

Carmen G. Higuera-Chan, Héctor Jasso-Fuentes, J. Adolfo Minjárez-Sosa. Control systems of interacting objects modeled as a game against nature under a mean field approach. Journal of Dynamics and Games, 2017, 4 (1) : 59-74. doi: 10.3934/jdg.2017004

[14]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control and Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[15]

Fabio Bagagiolo, Rosario Maggistro, Raffaele Pesenti. Origin-to-destination network flow with path preferences and velocity controls: A mean field game-like approach. Journal of Dynamics and Games, 2021, 8 (4) : 359-380. doi: 10.3934/jdg.2021007

[16]

Scott G. McCalla. Paladins as predators: Invasive waves in a spatial evolutionary adversarial game. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1437-1457. doi: 10.3934/dcdsb.2014.19.1437

[17]

William H. Sandholm. Local stability of strict equilibria under evolutionary game dynamics. Journal of Dynamics and Games, 2014, 1 (3) : 485-495. doi: 10.3934/jdg.2014.1.485

[18]

John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291

[19]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic and Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[20]

Yadong Shu, Ying Dai, Zujun Ma. Evolutionary game theory analysis of supply chain with fairness concerns of retailers. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022098

 Impact Factor: 

Metrics

  • PDF downloads (287)
  • HTML views (281)
  • Cited by (1)

Other articles
by authors

[Back to Top]