The collective behaviour of stochastic multi-agents swarms driven by Gaussian and non-Gaussian environments is analytically discussed in a mean-field approach. We first exogenously implement long range mutual interactions rules with strengths that are weighted by the real-time distance separating each agent with the swarm barycentre. Depending on the form of this barycentric modulation, a transition between two drastically different collective behaviours can be unveiled. A behavioural bifurcation threshold due to the tradeoff between the desynchronisation effects of the stochastic environment and the synchronising interactions is analytically calculated. For strong enough interactions, the emergence of a soliton propagating wave is established. Alternatively, weaker interactions cannot overcome the environmental noise and evanescent diffusive waves result. In a second and complementary approach, we show that the emergent solitons can alternatively be interpreted as being the optimal equilibrium of mean-field games (MFG) models with ad-hoc running cost functions which are here exactly determined. These MFG's soliton equilibria are therefore endogenously generated. Hence for the classes of models here proposed, an explicit correspondence between exogenous and endogenous interaction rules leading to similar collective effects is explicitly constructed. For non-Gaussian environments our results offer a new class of exactly solvable mean-field games dynamics.
Citation: |
[1] |
J. A. Acebrón, L. L. Bonilla, J. Pérez Vicente, F. Riort and R. Spiegler, The kuramoto model. A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77 (2005), 137-185.
![]() |
[2] |
Ph. Aghion and P. Howitt, The Economy of Growth, The MIT press, 2009.
![]() |
[3] |
A. D. Banner, R. Fernholz and I. Karatzas, Atlas models of equity markets, Annals Appl. Probab., 15 (2005), 2296-2230.
doi: 10.1214/105051605000000449.![]() ![]() ![]() |
[4] |
A. Bensoussan, J. Frehse and P. Yam, Mean Field Games and Mean Field Type Control Theory, SpringerBriefs in Mathematics, Springer, New York, 2013.
doi: 10.1007/978-1-4614-8508-7.![]() ![]() ![]() |
[5] |
P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Poretta, Long time average of mean field games, with a nonlocal coupling, SIAM J. Contr. and Optim., 51 (2013), 3558-3591.
doi: 10.1137/120904184.![]() ![]() ![]() |
[6] |
R. Carmona and F. Delarue, Probabilistic Theory Meanfield Games with Applications. II. Mean Field Games with Common Noise and Master Equations, Probability Theory and Stochastic Modelling, 84. Springer, Cham, 2018.
![]() ![]() |
[7] |
E. R. Fernholz, Stochastic Portfolio Theory, Applications of Mathematics (New York), 48. Stochastic Modelling and Applied Probability, Springer-Verlag, New York, 2002.
doi: 10.1007/978-1-4757-3699-1.![]() ![]() ![]() |
[8] |
E. Carlen, E. Gabetta and E. Regazzini, Probabilistic investigations on the explosion of solutions of the Kac equation with infinite energy initial distribution, J. Appl. Probab., 45 (2008), 95-106.
doi: 10.1017/S0021900200003983.![]() ![]() ![]() |
[9] |
O. Gallay, F Hashemi and M.-O. Hongler, Imitation, proximity and growth, Advances in Complex Syst., 22 (2019), 1950011.
![]() |
[10] |
C. Gardiner, Stochastic Methods. A Handbook for the Natural and Social Ssciences, Fourth edition. Springer Series in Synergetics. Springer-Verlag, Berlin, 2009.
![]() ![]() |
[11] |
D. A. Gomes, E. A. Pimentel and V. Voskanyan, Regularity Theory for Mean-Field Game Systems, SpringerBriefs in Mathematics. Springer, [Cham], 2016.
doi: 10.1007/978-3-319-38934-9.![]() ![]() ![]() |
[12] |
S. Gradshteyn and M. Ryzhik, Tables of integrals, series and products, Wiley.
![]() |
[13] |
O. Guéant, J.-M. Lasry and P.-L. Lions, Mean field games and applications, Paris-Princeton
Lectures on Mathematical Finance 2010, Lecture Notes in Math., Springer, Berlin, 2003 (2011), 205–266.
doi: 10.1007/978-3-642-14660-2_3.![]() ![]() ![]() |
[14] |
M.-O. Hongler, H. M. Soner and L. Streit, Stochastic control for a class of random evolution models, Appl. Math. Optim., 49 (2014), 113-121.
doi: 10.1007/s00245-003-0786-2.![]() ![]() ![]() |
[15] |
M.-O. Hongler and L. Streit, A probabilistic connection between the Burgers and a discrete Boltzmann equation, Europhys. Lett., 12 (1990), 193-197.
doi: 10.1209/0295-5075/12/3/001.![]() ![]() |
[16] |
W. Horsthemke and R. Lefever, Theory and Applications in Physics, Chemistry and Biology, Springer Series in Synergetics, 1984.
![]() |
[17] |
M. Y. Huang, P. E. Caines and R. P. Malhamé, Large population cost-coupled LQG problems with uniform agents: Individual-mass behaviour and decentralised $\epsilon$-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.
doi: 10.1109/TAC.2007.904450.![]() ![]() ![]() |
[18] |
T. Ichiba, V. Papathanakos, A. Banner, I. Karatzas and R. Fernholz, Hybrid atlas models, Annals Appl. Probab., 21 (2011), 609-644.
doi: 10.1214/10-AAP706.![]() ![]() ![]() |
[19] |
V. Kolokoltsov, J. Li and W. Yang, Mean field games and nonlinear markov processes, (2011), arXiv: 1112.3744.
![]() |
[20] |
M. D. König, J. Lorenz and F. Zilibotti, Innovation vs. imitation and the evolution of productivity distributions, Theor. Economy, 11 (2016), 1053-1102.
doi: 10.3982/TE1437.![]() ![]() ![]() |
[21] |
J.-M. Lasry and P.-L. Lions, Mean field games, Japan J. Math, 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8.![]() ![]() ![]() |
[22] |
J.-M. Lasry and P.-L. Lions, Jeux à champs moyen. I. Le cas stationnaire, C. R. Math, Acad. Sci. Paris, 343 (2006), 619-625.
doi: 10.1016/j.crma.2006.09.019.![]() ![]() ![]() |
[23] |
J.-M. Lasry and P.-L. Lions., Jeux à champs moyen. II. Horizon fini et contrôle optimal, C. R. Math, Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018.![]() ![]() ![]() |
[24] |
T. W. Ruijgrok and T. T. Wu, A completely solvable model of the nonlinear boltzmann equation, Physica A, 113 (1982), 401-416.
doi: 10.1016/0378-4371(82)90147-9.![]() ![]() ![]() |
[25] |
I. Swiecicki, T. Gobron and D. Ullmo, Schrödinger approach to mean-field games, Phys. Rev. Lett., 116 (2016), 128701.
![]() |
[26] |
D. Ullmo, I. Swiecicki and T. Gobron, Quadratic mean field games, Phys. Rep., 799 (2019), 1-35.
doi: 10.1016/j.physrep.2019.01.001.![]() ![]() ![]() |
[27] |
H. Yin. P. G. Mehta, S. P. Meyn and U. V. Shanbhag, Synchronisation of coupled oscillators is a game, IEEE Trans. Autom. Control, 57 (2012), 920-935.
doi: 10.1109/TAC.2011.2168082.![]() ![]() ![]() |