\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the uniqueness of Nash equilibrium in strategic-form games

Abstract Full Text(HTML) Related Papers Cited by
  • We consider a sufficient condition for the uniqueness of a Nash equilibrium in strategic-form games: for any two distinct strategy profiles, there is a player who can obtain a higher payoff by unilaterally changing the strategy from one strategy profile to the other strategy profile. An example of a game that satisfies this condition is the prisoner's dilemma. Viewed as a solution concept, the Nash equilibrium satisfying the condition is stronger than strict Nash Equilibrium and weaker than strict dominant strategy equilibrium.

    Mathematics Subject Classification: 91A10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Carlsson and E. van Damme, Equilibrium selection in stag hunt games, Frontiers of Game Theory, MIT Press, Cambridge, MA, (1993), 237–253.
    [2] L. A. Chenault, On the uniqueness of Nash equilibria, Economics Letters, 20 (1986), 203-205.  doi: 10.1016/0165-1765(86)90023-6.
    [3] A. A. Cournot, Researches into the Mathematical Principles of the Theory of Wealth, English edition of Recherches sur les Principes Mathématiques de la Théorie des Richesses, Kelley, New York, 1971.
    [4] D. Fudenberg and  J. TiroleGame Theory, The MIT Press, Cambridge, MA, 1991. 
    [5] J. C. Harsanyi, Oddness of the number of equilibrium points: A new proof, International Journal of Game Theory, 2 (1973), 235-250.  doi: 10.1007/BF01737572.
    [6] H. Hotelling, Stability in competition, Economic Journal, 39 (1929), 41-57.  doi: 10.1007/978-1-4613-8905-7_4.
    [7] R. D. Luce and H. Raiffa, Games and Decisions: Introduction and Critical Survey, John Wiley & Sons, Inc., New York, N. Y., 1957.
    [8] A. Mas-ColellM. D. Whinston and  J. R. GreenMicroeconomic Theory, Oxford University Press, New York, 1995. 
    [9] M. MaschlerE. Solan and  S. ZamirGame Theory, Cambridge University Press, Cambridge, 2013.  doi: 10.1017/CBO9780511794216.
    [10] A. Matsumoto and F. Szidarovszky, Game Theory and Its Applications, Springer, Tokyo, 2016. doi: 10.1007/978-4-431-54786-0.
    [11] J. F. Jr Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences of the United States of America, 36 (1950), 48-49.  doi: 10.1073/pnas.36.1.48.
    [12] J. Nash, Non-cooperative games, Annals of Mathematics (2), 54 (1951), 286-295. doi: 10.2307/1969529.
    [13] J. B. Rosen, Existence and uniqueness of equilibrium points for concave $n$-person games, Econometrica, 33 (1965), 520-534.  doi: 10.2307/1911749.
    [14] J. SuttonTechnology and Market Structure: Theory and History, The MIT Press, Cambridge, MA, 1998. 
    [15] A. TakayamaMathematical Economics, Second edition, Cambridge University Press, Cambridge, 1985. 
    [16] H. Uzawa, Walras' existence theorem and Brouwer's fixed-point theorem, Economic Studies Quarterly, 13 (1962), 59-62. 
    [17] E. van Damme, Stability and Perfection of Nash Equilibria, Second edition, Springer-Verlag, Berlin, 1991. doi: 10.1007/978-3-642-58242-4.
    [18] A. van den Nouweland, Rock-paper-scissors: A new and elegant proof, Economics Bulletin, 3 (2007), 1-6. 
    [19] A. Wald, Über einige Gleichungssysteme der mathematischen Ökonomie, Econometrica, 19 (1951), 368-403. 
  • 加载中
SHARE

Article Metrics

HTML views(635) PDF downloads(1197) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return