-
Previous Article
A dynamic for production economies with multiple equilibria
- JDG Home
- This Issue
-
Next Article
A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions
A note on the lattice structure for matching markets via linear programming
Av. Italia 1556, San Luis, Argentina |
Given two stable matchings in a many-to-one matching market with $ q $-responsive preferences, by manipulating the objective function of the linear program that characterizes the stable matching set, we compute the least upper bound and greatest lower bound between them.
References:
[1] |
M. Baïou and M. Balinski,
The stable admissions polytope, Math. Program., 87 (2000), 427-439.
doi: 10.1007/s101070050004. |
[2] |
D. Gale and L. S. Shapley,
College admissions and the stability of marriage, Amer. Math. Monthly, 69 (1962), 9-15.
doi: 10.1080/00029890.1962.11989827. |
[3] |
A. E. Roth,
The college admissions problem is not equivalent to the marriage problem, J. Econom. Theory, 36 (1985), 277-288.
doi: 10.1016/0022-0531(85)90106-1. |
[4] |
A. E. Roth,
The evolution of the labor market for medical interns and residents: A case study in game theory, J. Political Econom., 92 (1984), 991-1016.
doi: 10.1086/261272. |
[5] |
A. E. Roth, U. G. Rothblum and and J. H. Vande Vate,
Stable matchings, optimal assignments, and linear programming, Math. Oper. Res., 18 (1993), 803-828.
doi: 10.1287/moor.18.4.803. |
[6] |
A. E. Roth and M. A. Sotomayor, Two-Sided Matching. A Study in Game-Theoretic Modeling and Analysis, Econometric Society Monographs, 18, Cambidge University Press, Cambridge, 1990.
doi: 10.1017/CCOL052139015X.![]() ![]() |
[7] |
U. G. Rothblum,
Characterization of stable matchings as extreme points of a polytope, Math. Programming, 54 (1992), 57-67.
doi: 10.1007/BF01586041. |
[8] |
A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. |
[9] |
J. Sethuraman, C.-P. Teo and L. Qian,
Many-to-one stable matching: Geometry and fairness, Math. Oper. Res., 31 (2006), 581-596.
doi: 10.1287/moor.1060.0207. |
[10] |
J. H. Vande Vate,
Linear programming brings marital bliss, Oper. Res. Lett., 8 (1989), 147-153.
doi: 10.1016/0167-6377(89)90041-2. |
show all references
References:
[1] |
M. Baïou and M. Balinski,
The stable admissions polytope, Math. Program., 87 (2000), 427-439.
doi: 10.1007/s101070050004. |
[2] |
D. Gale and L. S. Shapley,
College admissions and the stability of marriage, Amer. Math. Monthly, 69 (1962), 9-15.
doi: 10.1080/00029890.1962.11989827. |
[3] |
A. E. Roth,
The college admissions problem is not equivalent to the marriage problem, J. Econom. Theory, 36 (1985), 277-288.
doi: 10.1016/0022-0531(85)90106-1. |
[4] |
A. E. Roth,
The evolution of the labor market for medical interns and residents: A case study in game theory, J. Political Econom., 92 (1984), 991-1016.
doi: 10.1086/261272. |
[5] |
A. E. Roth, U. G. Rothblum and and J. H. Vande Vate,
Stable matchings, optimal assignments, and linear programming, Math. Oper. Res., 18 (1993), 803-828.
doi: 10.1287/moor.18.4.803. |
[6] |
A. E. Roth and M. A. Sotomayor, Two-Sided Matching. A Study in Game-Theoretic Modeling and Analysis, Econometric Society Monographs, 18, Cambidge University Press, Cambridge, 1990.
doi: 10.1017/CCOL052139015X.![]() ![]() |
[7] |
U. G. Rothblum,
Characterization of stable matchings as extreme points of a polytope, Math. Programming, 54 (1992), 57-67.
doi: 10.1007/BF01586041. |
[8] |
A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1986. |
[9] |
J. Sethuraman, C.-P. Teo and L. Qian,
Many-to-one stable matching: Geometry and fairness, Math. Oper. Res., 31 (2006), 581-596.
doi: 10.1287/moor.1060.0207. |
[10] |
J. H. Vande Vate,
Linear programming brings marital bliss, Oper. Res. Lett., 8 (1989), 147-153.
doi: 10.1016/0167-6377(89)90041-2. |
[1] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[2] |
Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281 |
[3] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[4] |
Ardeshir Ahmadi, Hamed Davari-Ardakani. A multistage stochastic programming framework for cardinality constrained portfolio optimization. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 359-377. doi: 10.3934/naco.2017023 |
[5] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[6] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[7] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[8] |
Daoyuan Fang, Ting Zhang. Compressible Navier-Stokes equations with vacuum state in one dimension. Communications on Pure & Applied Analysis, 2004, 3 (4) : 675-694. doi: 10.3934/cpaa.2004.3.675 |
[9] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[10] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[11] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[12] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[13] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[14] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[15] |
Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119 |
[16] |
W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349 |
[17] |
Arunima Bhattacharya, Micah Warren. $ C^{2, \alpha} $ estimates for solutions to almost Linear elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021024 |
[18] |
Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 |
[19] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[20] |
Christophe Zhang. Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021006 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]