
- Previous Article
- JDG Home
- This Issue
-
Next Article
A note on the lattice structure for matching markets via linear programming
A dynamic for production economies with multiple equilibria
1. | Universidad Autónoma de San Luis Potosí, Facultad de Economía, San Luis Potosí, 78213, México |
2. | Instituto Potosino de Investigación Científica y Tecnológica, División de Control y Sistemas Dinámicos, San Luis Potosí, 78216, México |
In this article, we extend to private ownership production economies, the results presented by Bergstrom, Shimomura, and Yamato (2009) on the multiplicity of equilibria for the special kind of pure-exchanges economies called Shapley-Shubik economies. Furthermore, a dynamic system that represents the changes in the distribution of the firms on the production branches is introduced. For the first purpose, we introduce a particular, but large enough, production sector to the Shapley-Shubik economies, for which a simple technique to build private-ownership economies with a multiplicity of equilibria is developed. In this context, we analyze the repercussions on the behavior of the economy when the number of possible equilibria changes due to rational decisions on the production side. For the second purpose, we assume that the rational decisions on the production side provoke a change in the distribution of the firms over the set of branches of production.
References:
[1] |
E. Accinelli and E. Covarrubias,
Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.
doi: 10.3934/jdg.2016015. |
[2] |
T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp.
doi: 10.2202/1935-1704.1609. |
[3] |
E. Dierker,
Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.
doi: 10.2307/1912091. |
[4] |
T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002.
doi: 10.1007/978-1-4757-5317-2_4. |
[5] |
T. J. Kehoe,
An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.
doi: 10.2307/1912179. |
[6] |
T. J. Kehoe,
Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.
doi: 10.2307/1885738. |
[7] |
A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.
![]() |
[8] |
P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.
![]() |
[9] |
L. Shapley and M. Shubik,
An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.
doi: 10.1086/260607. |
show all references
References:
[1] |
E. Accinelli and E. Covarrubias,
Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.
doi: 10.3934/jdg.2016015. |
[2] |
T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp.
doi: 10.2202/1935-1704.1609. |
[3] |
E. Dierker,
Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.
doi: 10.2307/1912091. |
[4] |
T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002.
doi: 10.1007/978-1-4757-5317-2_4. |
[5] |
T. J. Kehoe,
An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.
doi: 10.2307/1912179. |
[6] |
T. J. Kehoe,
Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.
doi: 10.2307/1885738. |
[7] |
A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.
![]() |
[8] |
P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.
![]() |
[9] |
L. Shapley and M. Shubik,
An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.
doi: 10.1086/260607. |









[1] |
Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021027 |
[2] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[3] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[4] |
Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817 |
[5] |
Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021035 |
[6] |
Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[7] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[8] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]