January  2021, 8(1): 69-99. doi: 10.3934/jdg.2021002

A dynamic for production economies with multiple equilibria

1. 

Universidad Autónoma de San Luis Potosí, Facultad de Economía, San Luis Potosí, 78213, México

2. 

Instituto Potosino de Investigación Científica y Tecnológica, División de Control y Sistemas Dinámicos, San Luis Potosí, 78216, México

* Corresponding author: Humberto Muñiz

Received  September 2020 Revised  December 2020 Published  January 2021

In this article, we extend to private ownership production economies, the results presented by Bergstrom, Shimomura, and Yamato (2009) on the multiplicity of equilibria for the special kind of pure-exchanges economies called Shapley-Shubik economies. Furthermore, a dynamic system that represents the changes in the distribution of the firms on the production branches is introduced. For the first purpose, we introduce a particular, but large enough, production sector to the Shapley-Shubik economies, for which a simple technique to build private-ownership economies with a multiplicity of equilibria is developed. In this context, we analyze the repercussions on the behavior of the economy when the number of possible equilibria changes due to rational decisions on the production side. For the second purpose, we assume that the rational decisions on the production side provoke a change in the distribution of the firms over the set of branches of production.

Citation: Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021, 8 (1) : 69-99. doi: 10.3934/jdg.2021002
References:
[1]

E. Accinelli and E. Covarrubias, Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.  doi: 10.3934/jdg.2016015.  Google Scholar

[2]

T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp. doi: 10.2202/1935-1704.1609.  Google Scholar

[3]

E. Dierker, Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.  doi: 10.2307/1912091.  Google Scholar

[4]

T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002. doi: 10.1007/978-1-4757-5317-2_4.  Google Scholar

[5]

T. J. Kehoe, An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.  doi: 10.2307/1912179.  Google Scholar

[6]

T. J. Kehoe, Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.  doi: 10.2307/1885738.  Google Scholar

[7] A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.   Google Scholar
[8] P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.   Google Scholar
[9]

L. Shapley and M. Shubik, An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.  doi: 10.1086/260607.  Google Scholar

show all references

References:
[1]

E. Accinelli and E. Covarrubias, Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.  doi: 10.3934/jdg.2016015.  Google Scholar

[2]

T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp. doi: 10.2202/1935-1704.1609.  Google Scholar

[3]

E. Dierker, Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.  doi: 10.2307/1912091.  Google Scholar

[4]

T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002. doi: 10.1007/978-1-4757-5317-2_4.  Google Scholar

[5]

T. J. Kehoe, An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.  doi: 10.2307/1912179.  Google Scholar

[6]

T. J. Kehoe, Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.  doi: 10.2307/1885738.  Google Scholar

[7] A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.   Google Scholar
[8] P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.   Google Scholar
[9]

L. Shapley and M. Shubik, An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.  doi: 10.1086/260607.  Google Scholar

Figure 1.  Example 1: $ \omega=\left((5,2),(2,3)\right) $, $ f(x)=5.5x-\dfrac{1}{2}x^2 $, equilibria prices at $ p_1=1/2 $, $ p_2=1 $, $ p_3=2 $
Figure 2.  Example 2: $ r = 7/9 $ equilibrium price at $ p_1 = 0.5 $ is singular
Figure 3.  Example 4: equilibria prices at $ p\approx 0.154648, $ $ p=1 $ and $ p=6.194385 $
Figure 4.  Example 5: equilibria prices at $ p_1\approx 0.1792472498915, $ $ p_2=2 $ and $ p_3\approx 2.6915745984313 $
Figure 5.  Example 6: equilibria prices at $ p_1\approx 0.125623594624, $ $ p_2=1 $ and $ p_3\approx 1.0747180810635 $. Distribution $ (10,40) $
Figure 6.  Example 6: equilibria prices at $ p_1\approx 0.17025278062395, $ $ p_2 \approx 0.6155470462368 $ and $ p_3\approx 1.5223658675626 $. Distribution $ (11,39) $
Figure 7.  Example 7: Blue line represents the demand function $ x_2^1(p) = \phi_1(p^{-1}) $, red line represent right hand side of equation 26. Distribution $ (12,38) $
Figure 8.  Example 7: Blue line represents the demand function $ x_2^1(p)=\phi_1(p^{-1}) $, red line represent right hand side of equation 26. Distribution $ (14,36) $
Figure 9.  Profit analysis example 7: Blue line represents $ \pi_1(p) $, while red line represent $ \pi_2(p) $
Figure 10.  Profit table for example 7
Figure 11.  Utility table for example 7
[1]

Todd Hurst, Volker Rehbock. Optimizing micro-algae production in a raceway pond with variable depth. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021027

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[4]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

[5]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[6]

Enkhbat Rentsen, Battur Gompil. Generalized nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[7]

Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027

[8]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

 Impact Factor: 

Metrics

  • PDF downloads (54)
  • HTML views (107)
  • Cited by (0)

Other articles
by authors

[Back to Top]