# American Institute of Mathematical Sciences

• Previous Article
Causal discovery in machine learning: Theories and applications
• JDG Home
• This Issue
• Next Article
Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic
July  2021, 8(3): 187-202. doi: 10.3934/jdg.2021005

## Generalized intransitive dice II: Partition constructions

 Mathematics Department, The City College, 137 Street and Convent Avenue, New York City, NY 10031, USA

Received  September 2020 Published  July 2021 Early access  March 2021

A generalized $N$-sided die is a random variable $D$ on a sample space of $N$ equally likely outcomes taking values in the set of positive integers. We say of independent $N$-sided dice $D_i, D_j$ that $D_i$ beats $D_j$, written $D_i \to D_j$, if $Prob(D_i > D_j) > \frac{1}{2}$. A collection of dice $\{ D_i : i = 1, \dots, n \}$ models a tournament on the set $[n] = \{ 1, 2, \dots, n \}$, i.e. a complete digraph with $n$ vertices, when $D_i \to D_j$ if and only if $i \to j$ in the tournament. By using regular $n$-fold partitions of the set $[Nn]$ to label the $N$-sided dice we can model an arbitrary tournament on $[n]$ and $N$ can be chosen to be less than or equal to $N = 3^{n-2}$.

Citation: Ethan Akin, Julia Saccamano. Generalized intransitive dice II: Partition constructions. Journal of Dynamics and Games, 2021, 8 (3) : 187-202. doi: 10.3934/jdg.2021005
##### References:
 [1] E. Akin, Rock, paper, scissors, etc. - topics in the theory of regular tournaments, arXiv: 1806.11241v1, (2018), v4(2020). [2] E. Akin, Generalized intransitive dice: Mimicking an arbitrary tournament, J. of Dynamics and Games, 8 (2021), 1-20.  doi: 10.3934/jdg.2020030. [3] B. Alspach, On point-symmetric tournaments, Canad. Math. Bull., 13 (1970), 317-323.  doi: 10.4153/CMB-1970-061-7. [4] B. Conrey, J. Gabbard, K. Grant, A. Liu and K. E. Morrison, Intransitive Dice, Math. Mag., 89 (2016), 133-143.  doi: 10.4169/math.mag.89.2.133. [5] M. Goldberg and J. W. Moon, On the composition of two tournaments, Duke Math. J., 37 (1970), 323-332.  doi: 10.1215/S0012-7094-70-03742-7. [6] F. Harary and L. Moser, The theory of round robin tournaments, Amer. Math. Monthly, 73 (1966), 231-246.  doi: 10.1080/00029890.1966.11970749. [7] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York, NY, 1968, Reprinted, Dover Publications, Mineola, NY, 2015. [8] G. Sabidussi, The composition of graphs, Duke Math. J., 26 (1959), 693-696.  doi: 10.1215/S0012-7094-59-02667-5. [9] G. Sabidussi, The lexicographic product of graphs, Duke Math. J., 28 (1961), 573-578.  doi: 10.1215/S0012-7094-61-02857-5.

show all references

##### References:
 [1] E. Akin, Rock, paper, scissors, etc. - topics in the theory of regular tournaments, arXiv: 1806.11241v1, (2018), v4(2020). [2] E. Akin, Generalized intransitive dice: Mimicking an arbitrary tournament, J. of Dynamics and Games, 8 (2021), 1-20.  doi: 10.3934/jdg.2020030. [3] B. Alspach, On point-symmetric tournaments, Canad. Math. Bull., 13 (1970), 317-323.  doi: 10.4153/CMB-1970-061-7. [4] B. Conrey, J. Gabbard, K. Grant, A. Liu and K. E. Morrison, Intransitive Dice, Math. Mag., 89 (2016), 133-143.  doi: 10.4169/math.mag.89.2.133. [5] M. Goldberg and J. W. Moon, On the composition of two tournaments, Duke Math. J., 37 (1970), 323-332.  doi: 10.1215/S0012-7094-70-03742-7. [6] F. Harary and L. Moser, The theory of round robin tournaments, Amer. Math. Monthly, 73 (1966), 231-246.  doi: 10.1080/00029890.1966.11970749. [7] J. W. Moon, Topics on Tournaments, Holt, Rinehart and Winston, New York, NY, 1968, Reprinted, Dover Publications, Mineola, NY, 2015. [8] G. Sabidussi, The composition of graphs, Duke Math. J., 26 (1959), 693-696.  doi: 10.1215/S0012-7094-59-02667-5. [9] G. Sabidussi, The lexicographic product of graphs, Duke Math. J., 28 (1961), 573-578.  doi: 10.1215/S0012-7094-61-02857-5.
 [1] Ethan Akin. Generalized intransitive dice: Mimicking an arbitrary tournament. Journal of Dynamics and Games, 2021, 8 (1) : 1-20. doi: 10.3934/jdg.2020030 [2] Dean Crnković, Sanja Rukavina, Andrea Švob. Self-orthogonal codes from equitable partitions of distance-regular graphs. Advances in Mathematics of Communications, 2022  doi: 10.3934/amc.2022014 [3] Virginie Bonnaillie-Noël, Corentin Léna. Spectral minimal partitions of a sector. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 27-53. doi: 10.3934/dcdsb.2014.19.27 [4] Xing-Fu Zhong. Variational principles of invariance pressures on partitions. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 491-508. doi: 10.3934/dcds.2020019 [5] Michal Kupsa, Štěpán Starosta. On the partitions with Sturmian-like refinements. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3483-3501. doi: 10.3934/dcds.2015.35.3483 [6] Bernard Helffer, Thomas Hoffmann-Ostenhof, Susanna Terracini. Nodal minimal partitions in dimension $3$. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 617-635. doi: 10.3934/dcds.2010.28.617 [7] Mónica Clapp, Juan Carlos Fernández, Alberto Saldaña. Critical polyharmonic systems and optimal partitions. Communications on Pure and Applied Analysis, 2021, 20 (11) : 4007-4023. doi: 10.3934/cpaa.2021141 [8] Manfred G. Madritsch. Non-normal numbers with respect to Markov partitions. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 663-676. doi: 10.3934/dcds.2014.34.663 [9] Annibale Magni, Matteo Novaga. A note on non lower semicontinuous perimeter functionals on partitions. Networks and Heterogeneous Media, 2016, 11 (3) : 501-508. doi: 10.3934/nhm.2016006 [10] Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018 [11] Hassan Emamirad, Arnaud Rougirel. A functional calculus approach for the rational approximation with nonuniform partitions. Discrete and Continuous Dynamical Systems, 2008, 22 (4) : 955-972. doi: 10.3934/dcds.2008.22.955 [12] Guo-Niu Han, Huan Xiong. Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29 (1) : 1841-1857. doi: 10.3934/era.2020094 [13] Heide Gluesing-Luerssen. Partitions of Frobenius rings induced by the homogeneous weight. Advances in Mathematics of Communications, 2014, 8 (2) : 191-207. doi: 10.3934/amc.2014.8.191 [14] Mónica Clapp, Angela Pistoia. Yamabe systems and optimal partitions on manifolds with symmetries. Electronic Research Archive, 2021, 29 (6) : 4327-4338. doi: 10.3934/era.2021088 [15] Thomas Ward, Yuki Yayama. Markov partitions reflecting the geometry of $\times2$, $\times3$. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 613-624. doi: 10.3934/dcds.2009.24.613 [16] Linh Nguyen, Irina Perfilieva, Michal Holčapek. Boundary value problem: Weak solutions induced by fuzzy partitions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 715-732. doi: 10.3934/dcdsb.2019263 [17] Samuel Amstutz, Antonio André Novotny, Nicolas Van Goethem. Minimal partitions and image classification using a gradient-free perimeter approximation. Inverse Problems and Imaging, 2014, 8 (2) : 361-387. doi: 10.3934/ipi.2014.8.361 [18] Olof Heden, Faina I. Solov’eva. Partitions of $\mathbb F$n into non-parallel Hamming codes. Advances in Mathematics of Communications, 2009, 3 (4) : 385-397. doi: 10.3934/amc.2009.3.385 [19] Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29 (3) : 2375-2389. doi: 10.3934/era.2020120 [20] Sébastien Labbé. Rauzy induction of polygon partitions and toral $\mathbb{Z}^2$-rotations. Journal of Modern Dynamics, 2021, 17: 481-528. doi: 10.3934/jmd.2021017

Impact Factor:

## Metrics

• HTML views (391)
• Cited by (0)

• on AIMS