[1]
|
Y. Achdou, Finite difference methods for mean field games, in Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications, Lecture Notes in Math., 2074, Springer, Heidelberg, 2013, 1-47.
doi: 10.1007/978-3-642-36433-4_1.
|
[2]
|
Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: Convergence of a finite difference method, SIAM J. Numer. Anal., 51 (2013), 2585-2612.
doi: 10.1137/120882421.
|
[3]
|
Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: Numerical methods, SIAM J. Numer. Anal., 48 (2010), 1136-1162.
doi: 10.1137/090758477.
|
[4]
|
N. Almulla, R. Ferreira and D. Gomes, Two numerical approaches to stationary mean-field games, Dyn. Games Appl., 7 (2017), 657-682.
doi: 10.1007/s13235-016-0203-5.
|
[5]
|
J.-D. Benamou and G. Carlier, Augmented Lagrangian methods for transport optimization, mean field games and degenerate elliptic equations, J. Optim. Theory Appl., 167 (2015), 1-26.
doi: 10.1007/s10957-015-0725-9.
|
[6]
|
J. -D. Benamou, G. Carlier and F. Santambrogio, Variational mean field games, in Active Particles. Vol. 1. Advances in Theory, Models, and Applications
doi: 10.1007/978-3-319-49996-3_4.
|
[7]
|
L. M. Briceño-Arias and P. L. Combettes, Monotone operator methods for Nash equilibria in non-potential games, in Computational and Analytical Mathematics, Springer Proc. Math. Stat., 50, Springer, New York, 2013, 143-159.
doi: 10.1007/978-1-4614-7621-4_9.
|
[8]
|
L. Briceño Arias, D. Kalise, Z. Kobeissi, M. Laurière, A. Mateos González and F. J. Silva, On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings, in CEMRACS 2017-Numerical Methods for Stochastic Models: Control, Uncertainty Quantification, Mean-Field, ESAIM Proc. Surveys, 65, EDP Sci., Les Ulis, 2019, 330-348.
doi: 10.1051/proc/201965330.
|
[9]
|
L. M. Briceño Arias, D. Kalise and F. J. Silva, Proximal methods for stationary mean field games with local couplings, SIAM J. Control Optim., 56 (2018), 801-836.
doi: 10.1137/16M1095615.
|
[10]
|
F. Camilli and F. Silva, A semi-discrete approximation for a first order mean field game problem, Netw. Heterog. Media, 7 (2012), 263-277.
doi: 10.3934/nhm.2012.7.263.
|
[11]
|
P. Cardaliaguet, Long time average of first order mean field games and weak KAM theory, Dyn. Games Appl., 3 (2013), 473-488.
doi: 10.1007/s13235-013-0091-x.
|
[12]
|
P. Cardaliaguet, Notes on Mean Field Games, (2013)., Available from: Https://www.ceremade.dauphine.fr/ cardaliaguet/.
|
[13]
|
P. Cardaliaguet, P. J. Graber, A. Porretta and D. Tonon, Second order mean field games with degenerate diffusion and local coupling, NoDEA Nonlinear Differential Equations Appl., 22 (2015), 1287-1317.
doi: 10.1007/s00030-015-0323-4.
|
[14]
|
P. Cardaliaguet and S. Hadikhanloo, Learning in mean field games: The fictitious play, ESAIM Control Optim. Calc. Var., 23 (2017), 569-591.
doi: 10.1051/cocv/2016004.
|
[15]
|
E. Carlini and F. J. Silva, A fully discrete semi-Lagrangian scheme for a first order mean field game problem, SIAM J. Numer. Anal., 52 (2014), 45-67.
doi: 10.1137/120902987.
|
[16]
|
E. Carlini and F. J. Silva, A semi-Lagrangian scheme for a degenerate second order mean field game system, Discrete Contin. Dyn. Syst., 35 (2015), 4269-4292.
doi: 10.3934/dcds.2015.35.4269.
|
[17]
|
E. Carlini and F. J. Silva, On the discretization of some nonlinear Fokker-Planck-Kolmogorov equations and applications, SIAM J. Numer. Anal., 56 (2018), 2148-2177.
doi: 10.1137/17M1143022.
|
[18]
|
A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vision, 40 (2011), 120-145.
doi: 10.1007/s10851-010-0251-1.
|
[19]
|
A. Chambolle and T. Pock, On the ergodic convergence rates of a first-order primal-dual algorithm, Math. Program., 159 (2016), 253-287.
doi: 10.1007/s10107-015-0957-3.
|
[20]
|
R. Ferreira and D. Gomes, Existence of weak solutions to stationary mean-field games through variational inequalities, SIAM J. Math. Anal., 50 (2018), 5969-6006.
doi: 10.1137/16M1106705.
|
[21]
|
R. Ferreira, D. Gomes and T. Tada, Existence of weak solutions to time-dependent mean-field games, preprint, arXiv: 2001.03928.
|
[22]
|
T. Goldstein, M. Li, X. Yuan, E. Esser and R. Baraniuk, Adaptive primal-dual hybrid gradient methods for saddle-point problems, preprint, arXiv: 1305.0546.
|
[23]
|
D. A. Gomes and J. Saúde, Mean field games models-A brief survey, Dyn. Games Appl., 4 (2014), 110-154.
doi: 10.1007/s13235-013-0099-2.
|
[24]
|
D. A. Gomes and J. Saúde, Numerical methods for finite-state mean-field games satisfying a monotonicity condition, Appl. Math. Optim., 83 (2021), 51-82.
doi: 10.1007/s00245-018-9510-0.
|
[25]
|
P. J. Graber and A. R. Mészáros, Sobolev regularity for first order mean field games, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 1557-1576.
doi: 10.1016/j.anihpc.2018.01.002.
|
[26]
|
P. J. Graber, A. R. Mészáros, F. J. Silva and D. Tonon, The planning problem in mean field games as regularized mass transport, Calc. Var. Partial Differential Equations, 58 (2019), 28pp.
doi: 10.1007/s00526-019-1561-9.
|
[27]
|
O. Guéant, J. -M. Lasry and P. -L. Lions, Mean field games and applications, in Paris-Princeton Lectures on Mathematical Finance 2010, Lecture Notes in Math., 2003, Springer, Berlin, 2011, 205-266.
doi: 10.1007/978-3-642-14660-2_3.
|
[28]
|
S. Hadikhanloo, Learning in anonymous nonatomic games with applications to first-order mean field games, preprint, arXiv: 1704.00378.
|
[29]
|
S. Hadikhanloo and F. J. Silva, Finite mean field games: Fictitious play and convergence to a first order continuous mean field game, J. Math. Pures Appl. (9), 132 (2019), 369-397.
doi: 10.1016/j.matpur.2019.02.006.
|
[30]
|
M. Huang, P. E. Caines and R. P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized $\epsilon$-Nash equilibria, IEEE Trans. Automat. Control, 52 (2007), 1560-1571.
doi: 10.1109/TAC.2007.904450.
|
[31]
|
M. Huang, R. P. Malhamé and P. E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6 (2006), 221-251.
doi: 10.4310/CIS.2006.v6.n3.a5.
|
[32]
|
M. Jacobs and F. Léger, A fast approach to optimal transport: The back-and-forth method, Numer. Math., 146 (2020), 513-544.
doi: 10.1007/s00211-020-01154-8.
|
[33]
|
M. Jacobs, F. Léger, W. Li and S. Osher, Solving large-scale optimization problems with a convergence rate independent of grid size, SIAM J. Numer. Anal., 57 (2019), 1100-1123.
doi: 10.1137/18M118640X.
|
[34]
|
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), 619-625.
doi: 10.1016/j.crma.2006.09.019.
|
[35]
|
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), 679-684.
doi: 10.1016/j.crma.2006.09.018.
|
[36]
|
J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), 229-260.
doi: 10.1007/s11537-007-0657-8.
|
[37]
|
S. Liu, M. Jacobs, W. Li, L. Nurbekyan and S. J. Osher, Computational methods for nonlocal mean field games with applications, preprint, arXiv: 2004.12210.
|
[38]
|
L. Nurbekyan, One-dimensional, non-local, first-order stationary mean-field games with congestion: A Fourier approach, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 963-990.
doi: 10.3934/dcdss.2018057.
|
[39]
|
L. Nurbekyan and J. Saúde, Fourier approximation methods for first-order nonlocal mean-field games, Port. Math., 75 (2018), 367-396.
doi: 10.4171/PM/2023.
|
[40]
|
B. C. Vũ, A variable metric extension of the forward-backward-forward algorithm for monotone operators, Numer. Funct. Anal. Optim., 34 (2013), 1050-1065.
doi: 10.1080/01630563.2013.763825.
|