
-
Previous Article
Crisis risk prediction with concavity from Polymodel
- JDG Home
- This Issue
-
Next Article
Explaining the definition of wholesale access prices in the Portuguese telecommunications industry
Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution
1. | Research Group in Economic Dynamics, Faculty of Economics and Administration, Universidad de la República, Montevideo, Uruguay |
2. | Institute for Latin American Studies and School of Business & Economics, Freie Universität Berlin, Berlin, Germany |
This work addresses the spread of the coronavirus through a non-parametric approach, with the aim of identifying communities of countries based on how similar their evolution of the disease is. The analysis focuses on the number of daily new COVID-19 cases per ten thousand people during a period covering at least 250 days after the confirmation of the tenth case. Dynamic analysis is performed by constructing Minimal Spanning Trees (MST) and identifying groups of similarity in contagions evolution in 95 time windows of a 150-day amplitude that moves one day at a time. The intensity measure considered was the number of times countries belonged to a similar performance group in constructed time windows. Groups' composition is not stable, indicating that the COVID-19 evolution needs to be treated as a dynamic problem in the context of complex systems. Three communities were identified by applying the Louvain algorithm. Identified communities analysis according to each country's socioeconomic characteristics and variables related to the disease sheds light on whether there is any suggested course of action. Even when strong testing and tracing cases policies may be related with a more stable dynamic of the disease, results indicate that communities are conformed by countries with diverse characteristics. The best option to counteract the harmful effects of a pandemic may be having strong health systems in place, with contingent capacity to deal with unforeseen events and available resources capable of a rapid expansion of its capacity.
References:
[1] |
S. Aghabozorgi, A. S. Shirkhorshidi and T. Y. Wah,
Time-series clustering–A decade review, Information Systems, 53 (2015), 16-38.
doi: 10.1016/j.is.2015.04.007. |
[2] |
E. Alvarez, J. G. Brida and E. Limas,
Clustering of time series for the analysis of the COVID-19 pandemic evolution, Economics Bulletin, 41 (2021), 1082-1096.
|
[3] |
K. Asahi, E. A. Undurraga, R. Valdés and R. Wagner, The effect of {COVID-19} on the economy: Evidence from an early adopter of localized lockdowns, medRxiv, (2020).
doi: 10.1101/2020.09.21.20198887. |
[4] |
A. Ashofteh and J. M. Bravo,
A study on the quality of novel coronavirus (COVID-19) official datasets, Statistical J. IAOS, 36 (2020), 291-301.
doi: 10.3233/SJI-200674. |
[5] |
V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks, J. Statistical Mechanics: Theory and Experiment, (2008).
doi: 10.1088/1742-5468/2008/10/P10008. |
[6] |
T. Caliński and J. A. Harabasz,
A dendrite method for cluster analysis, Comm. Statist., 3 (1974), 1-27.
doi: 10.1080/03610927408827101. |
[7] |
V. Chandu, Identification of spatial variations in COVID-19 epidemiological data using k-means clustering algorithm: A global perspective, medRxiv, 2020.
doi: 10.1101/2020.06.03.20121194. |
[8] |
G. Ciminelli and S. Garcia-Mandicó, Mitigation policies and emergency care management in Europe's ground zero for COVID-19, SSRN, (2020).
doi: 10.2139/ssrn.3604688. |
[9] |
C. Costa-Santos, A. Luísa Neves, R. Correia, P. Santos and M. Monteiro-Soares, et al., COVID-19 surveillance - A descriptive study on data quality issues, medRxiv, (2020).
doi: 10.1101/2020.11.03.20225565. |
[10] |
K. Degeling, N. N. Baxter, J. Emery, M. A. Jenkins and F. Franchini,
An inverse stage-shift model to estimate the excess mortality and health economic impact of delayed access to cancer services due to the COVID-19 pandemic, Asia-Pacific J. Clinical Oncology, 17 (2021), 359-367.
doi: 10.1111/ajco.13505. |
[11] |
R. O. Duda and P. E. Hart, D. G. Stork, Pattern Classification and Scene Analysis, Wiley New York, 1973. |
[12] |
A. Fahim, Finding the number of clusters in data and better initial centers for k-means algorithm, Internat. J. Intelligent Systems & Applications, 12 (2020). |
[13] |
G. Gan, C. Ma and J. Wu, Data Clustering. Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability, 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 2007.
doi: 10.1137/1.9780898718348. |
[14] |
A. Gandjour, How much reserve capacity is justifiable for hospital pandemic preparedness? A cost-effectiveness analysis for COVID-19 in Germany, medRxiv, (2020).
doi: 10.1101/2020.07.27.20162743. |
[15] |
A. Z. Górski, S. Drożdż and J. Kwapień, Minimal spanning tree graphs and power like scaling in FOREX networks, preprint, arXiv: 0809.0437. |
[16] |
M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2010.
![]() ![]() |
[17] |
J. B. Kruskal Jr.,
On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), 48-50.
doi: 10.1090/S0002-9939-1956-0078686-7. |
[18] |
J. Kwapień, S. Gworek, S. Drożdż and A. Górski, Analysis of a network structure of the foreign currency exchange market, J. Econ. Interact. Coord., 4 (2009).
doi: 10.1007/s11403-009-0047-9. |
[19] |
E. Limas,
An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates, J. Dyn. Games, 6 (2019), 131-148.
doi: 10.3934/jdg.2019010. |
[20] |
A. C. Mahasinghe, K. K. W. H. Erandi and S. S. N. Perera, An optimal lockdown relaxation strategy for minimizing the economic effects of COVID-19 outbreak, International J. Mathematics and Mathematical Sciences, 2021 (2021). |
[21] |
R. N. Mantegna,
Hierarchical structure in financial markets, Eur. Phys. J. B - Condensed Matter and Complex Systems, 11 (1999), 193-197.
doi: 10.1007/s100510050929. |
[22] |
R. N. Mantegna and H. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2007.
![]() ![]() |
[23] |
S. Milan and E. Treré, The rise of the data poor: The COVID-19 pandemic seen from the margins, Social Media + Society, 6 (2020).
doi: 10.1177/2056305120948233. |
[24] |
F. Milani,
COVID-19 outbreak, social response, and early economic effects: A global VAR analysis of cross-country interdependencies, J. Population Economics, 34 (2021), 223-252.
doi: 10.1007/s00148-020-00792-4. |
[25] |
B. W. Mol and J. Karnon, Strict lockdown versus flexible social distance strategy for COVID-19 disease: A cost-effectiveness analysis, medRxiv, (2020).
doi: 10.1101/2020.09.14.20194605. |
[26] |
R. C. Prim,
Shortest connection networks and some generalizations, Bell System Tech. J., 36 (1957), 1389-1401.
doi: 10.1002/j.1538-7305.1957.tb01515.x. |
[27] |
M. Rešovský, D. Horváth, V. Gazda and M. Siničáková, Minimum spanning tree application in the currency market, Biatec, 21 (2013), 21-23. Available from: https://www.nbs.sk/img/Documents/PUBLIK_NBS_FSR/Biatec/Rok2013/07-2013/05_biatec13-7_resovsky_EN.pdf. |
[28] |
M. Roser, H. Ritchie, E. Ortiz-Ospina and J. Hasell, Coronavirus pandemic (COVID-19), Our World in Data, (2020). |
[29] |
F. Santiago, C. De Fuentes, J. A. Peerally and J. Larsen,
Investing in innovative and productive capabilities for resilient economies in a post-COVID-19 world, Internat. J. Technological Learning, Innovation and Development, 12 (2020), 153-167.
doi: 10.1504/IJTLID.2020.110623. |
[30] |
P. Schellekens and D. M. Sourrouille, COVID-19 mortality in rich and poor countries: A tale of two pandemics?, World Bank Policy Research Working Paper, No. 9260, (2020). |
[31] |
D. Sherpa, Estimating impact of austerity policies in COVID-19 fatality rates: Examining the dynamics of economic policy and Case Fatality Rates (CFR) of COVID-19 in OECD countries, medRxiv, (2020).
doi: 10.2139/ssrn.3581274. |
[32] |
J. A. Tenreiro Machado and A. M. Lopes,
Rare and extreme events: The case of COVID-19 pandemic, Nonlinear Dynamics, 100 (2020), 2953-2972.
doi: 10.1007/s11071-020-05680-w. |
[33] |
G.-J. Wang, C. Xie, Y.-J. Chen and S. Chen,
Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation coefficient and minimum spanning tree, Entropy, 15 (2013), 1643-1662.
doi: 10.3390/e15051643. |
[34] |
V. Zarikas, S. G. Poulopoulos, Z. Gareiou and E. Zervas, Clustering analysis of countries using the COVID-19 cases dataset, Data in Brief, 31 (2020).
doi: 10.1016/j.dib.2020.105787. |
show all references
References:
[1] |
S. Aghabozorgi, A. S. Shirkhorshidi and T. Y. Wah,
Time-series clustering–A decade review, Information Systems, 53 (2015), 16-38.
doi: 10.1016/j.is.2015.04.007. |
[2] |
E. Alvarez, J. G. Brida and E. Limas,
Clustering of time series for the analysis of the COVID-19 pandemic evolution, Economics Bulletin, 41 (2021), 1082-1096.
|
[3] |
K. Asahi, E. A. Undurraga, R. Valdés and R. Wagner, The effect of {COVID-19} on the economy: Evidence from an early adopter of localized lockdowns, medRxiv, (2020).
doi: 10.1101/2020.09.21.20198887. |
[4] |
A. Ashofteh and J. M. Bravo,
A study on the quality of novel coronavirus (COVID-19) official datasets, Statistical J. IAOS, 36 (2020), 291-301.
doi: 10.3233/SJI-200674. |
[5] |
V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks, J. Statistical Mechanics: Theory and Experiment, (2008).
doi: 10.1088/1742-5468/2008/10/P10008. |
[6] |
T. Caliński and J. A. Harabasz,
A dendrite method for cluster analysis, Comm. Statist., 3 (1974), 1-27.
doi: 10.1080/03610927408827101. |
[7] |
V. Chandu, Identification of spatial variations in COVID-19 epidemiological data using k-means clustering algorithm: A global perspective, medRxiv, 2020.
doi: 10.1101/2020.06.03.20121194. |
[8] |
G. Ciminelli and S. Garcia-Mandicó, Mitigation policies and emergency care management in Europe's ground zero for COVID-19, SSRN, (2020).
doi: 10.2139/ssrn.3604688. |
[9] |
C. Costa-Santos, A. Luísa Neves, R. Correia, P. Santos and M. Monteiro-Soares, et al., COVID-19 surveillance - A descriptive study on data quality issues, medRxiv, (2020).
doi: 10.1101/2020.11.03.20225565. |
[10] |
K. Degeling, N. N. Baxter, J. Emery, M. A. Jenkins and F. Franchini,
An inverse stage-shift model to estimate the excess mortality and health economic impact of delayed access to cancer services due to the COVID-19 pandemic, Asia-Pacific J. Clinical Oncology, 17 (2021), 359-367.
doi: 10.1111/ajco.13505. |
[11] |
R. O. Duda and P. E. Hart, D. G. Stork, Pattern Classification and Scene Analysis, Wiley New York, 1973. |
[12] |
A. Fahim, Finding the number of clusters in data and better initial centers for k-means algorithm, Internat. J. Intelligent Systems & Applications, 12 (2020). |
[13] |
G. Gan, C. Ma and J. Wu, Data Clustering. Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability, 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 2007.
doi: 10.1137/1.9780898718348. |
[14] |
A. Gandjour, How much reserve capacity is justifiable for hospital pandemic preparedness? A cost-effectiveness analysis for COVID-19 in Germany, medRxiv, (2020).
doi: 10.1101/2020.07.27.20162743. |
[15] |
A. Z. Górski, S. Drożdż and J. Kwapień, Minimal spanning tree graphs and power like scaling in FOREX networks, preprint, arXiv: 0809.0437. |
[16] |
M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2010.
![]() ![]() |
[17] |
J. B. Kruskal Jr.,
On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), 48-50.
doi: 10.1090/S0002-9939-1956-0078686-7. |
[18] |
J. Kwapień, S. Gworek, S. Drożdż and A. Górski, Analysis of a network structure of the foreign currency exchange market, J. Econ. Interact. Coord., 4 (2009).
doi: 10.1007/s11403-009-0047-9. |
[19] |
E. Limas,
An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates, J. Dyn. Games, 6 (2019), 131-148.
doi: 10.3934/jdg.2019010. |
[20] |
A. C. Mahasinghe, K. K. W. H. Erandi and S. S. N. Perera, An optimal lockdown relaxation strategy for minimizing the economic effects of COVID-19 outbreak, International J. Mathematics and Mathematical Sciences, 2021 (2021). |
[21] |
R. N. Mantegna,
Hierarchical structure in financial markets, Eur. Phys. J. B - Condensed Matter and Complex Systems, 11 (1999), 193-197.
doi: 10.1007/s100510050929. |
[22] |
R. N. Mantegna and H. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2007.
![]() ![]() |
[23] |
S. Milan and E. Treré, The rise of the data poor: The COVID-19 pandemic seen from the margins, Social Media + Society, 6 (2020).
doi: 10.1177/2056305120948233. |
[24] |
F. Milani,
COVID-19 outbreak, social response, and early economic effects: A global VAR analysis of cross-country interdependencies, J. Population Economics, 34 (2021), 223-252.
doi: 10.1007/s00148-020-00792-4. |
[25] |
B. W. Mol and J. Karnon, Strict lockdown versus flexible social distance strategy for COVID-19 disease: A cost-effectiveness analysis, medRxiv, (2020).
doi: 10.1101/2020.09.14.20194605. |
[26] |
R. C. Prim,
Shortest connection networks and some generalizations, Bell System Tech. J., 36 (1957), 1389-1401.
doi: 10.1002/j.1538-7305.1957.tb01515.x. |
[27] |
M. Rešovský, D. Horváth, V. Gazda and M. Siničáková, Minimum spanning tree application in the currency market, Biatec, 21 (2013), 21-23. Available from: https://www.nbs.sk/img/Documents/PUBLIK_NBS_FSR/Biatec/Rok2013/07-2013/05_biatec13-7_resovsky_EN.pdf. |
[28] |
M. Roser, H. Ritchie, E. Ortiz-Ospina and J. Hasell, Coronavirus pandemic (COVID-19), Our World in Data, (2020). |
[29] |
F. Santiago, C. De Fuentes, J. A. Peerally and J. Larsen,
Investing in innovative and productive capabilities for resilient economies in a post-COVID-19 world, Internat. J. Technological Learning, Innovation and Development, 12 (2020), 153-167.
doi: 10.1504/IJTLID.2020.110623. |
[30] |
P. Schellekens and D. M. Sourrouille, COVID-19 mortality in rich and poor countries: A tale of two pandemics?, World Bank Policy Research Working Paper, No. 9260, (2020). |
[31] |
D. Sherpa, Estimating impact of austerity policies in COVID-19 fatality rates: Examining the dynamics of economic policy and Case Fatality Rates (CFR) of COVID-19 in OECD countries, medRxiv, (2020).
doi: 10.2139/ssrn.3581274. |
[32] |
J. A. Tenreiro Machado and A. M. Lopes,
Rare and extreme events: The case of COVID-19 pandemic, Nonlinear Dynamics, 100 (2020), 2953-2972.
doi: 10.1007/s11071-020-05680-w. |
[33] |
G.-J. Wang, C. Xie, Y.-J. Chen and S. Chen,
Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation coefficient and minimum spanning tree, Entropy, 15 (2013), 1643-1662.
doi: 10.3390/e15051643. |
[34] |
V. Zarikas, S. G. Poulopoulos, Z. Gareiou and E. Zervas, Clustering analysis of countries using the COVID-19 cases dataset, Data in Brief, 31 (2020).
doi: 10.1016/j.dib.2020.105787. |






C 1 | C 2 | C 3 | ||
Average population density | 326 | 182 | 96 | |
Number of countries per | 1 | 14 | 15 | 1 |
quartile of population | 2 | 10 | 16 | 5 |
density | 3 | 13 | 16 | 2 |
4 | 19 | 11 | 1 | |
Median age | 33 | 35 | 29 | |
Number of countries per | 1 | 16 | 11 | 3 |
quartile of median age | 2 | 13 | 14 | 3 |
3 | 10 | 19 | 1 | |
4 | 14 | 15 | 1 | |
Average GDP per capita* | 20545 | 26327 | 11196 | |
Number of countries per | 1 | 16 | 9 | 4 |
quartile of GDP per capita | 2 | 15 | 13 | 2 |
3 | 12 | 16 | 3 | |
4 | 11 | 19 | 0 | |
Average life expectancy | 75 | 76 | 72 | |
Number of countries per | 1 | 14 | 12 | 5 |
quartile of life expectancy | 2 | 15 | 15 | 1 |
3 | 14 | 14 | 3 | |
4 | 13 | 18 | 0 | |
Av. Human Development Index | 32.7 | 34.6 | 29.5 | |
Number of countries per | 1 | 17 | 11 | 3 |
quartile of Human | 2 | 16 | 12 | 2 |
Development Index | 3 | 9 | 18 | 3 |
4 | 14 | 17 | 0 |
C 1 | C 2 | C 3 | ||
Average population density | 326 | 182 | 96 | |
Number of countries per | 1 | 14 | 15 | 1 |
quartile of population | 2 | 10 | 16 | 5 |
density | 3 | 13 | 16 | 2 |
4 | 19 | 11 | 1 | |
Median age | 33 | 35 | 29 | |
Number of countries per | 1 | 16 | 11 | 3 |
quartile of median age | 2 | 13 | 14 | 3 |
3 | 10 | 19 | 1 | |
4 | 14 | 15 | 1 | |
Average GDP per capita* | 20545 | 26327 | 11196 | |
Number of countries per | 1 | 16 | 9 | 4 |
quartile of GDP per capita | 2 | 15 | 13 | 2 |
3 | 12 | 16 | 3 | |
4 | 11 | 19 | 0 | |
Average life expectancy | 75 | 76 | 72 | |
Number of countries per | 1 | 14 | 12 | 5 |
quartile of life expectancy | 2 | 15 | 15 | 1 |
3 | 14 | 14 | 3 | |
4 | 13 | 18 | 0 | |
Av. Human Development Index | 32.7 | 34.6 | 29.5 | |
Number of countries per | 1 | 17 | 11 | 3 |
quartile of Human | 2 | 16 | 12 | 2 |
Development Index | 3 | 9 | 18 | 3 |
4 | 14 | 17 | 0 |
Communities | No. of countries by continent | |||||||
Countries | Africa | Asia | Europe | North America | Oceania | South America | Islands | |
1 | 56 | 11 | 17 | 14 | 8 | 1 | 5 | 9 |
2 | 59 | 7 | 18 | 24 | 5 | 1 | 4 | 10 |
3 | 9 | 3 | 2 | 3 | 1 | 0 | 0 | 0 |
Total | 124 | 21 | 37 | 41 | 14 | 2 | 9 | 19 |
Communities | No. of countries by continent | |||||||
Countries | Africa | Asia | Europe | North America | Oceania | South America | Islands | |
1 | 56 | 11 | 17 | 14 | 8 | 1 | 5 | 9 |
2 | 59 | 7 | 18 | 24 | 5 | 1 | 4 | 10 |
3 | 9 | 3 | 2 | 3 | 1 | 0 | 0 | 0 |
Total | 124 | 21 | 37 | 41 | 14 | 2 | 9 | 19 |
Testing policy codebook: 0 – No testing policy, 1-Only those who both (a) have symptoms and also (b) meet specific criteria (e.g. key workers, admitted to hospital, came into contact with a known case, returned from overseas), 2-Testing of anyone showing COVID-19 symptoms, 3-Open public testing (e.g. "drive through" testing available to asymptomatic people). *Any country of the sample had category 0 as predominant testing policy. Tracing policy codebook: 0 – No tracing, 1 -Some, but not all, cases are traced, 2 – All cases are traced
C 1 | C 2 | C 3 | ||
Average Max. Government Response Index | 77 | 76 | 75 | |
Number of countries per quartile | 1 | 10 | 16 | 3 |
of Max. Government Response Index | 2 | 18 | 8 | 2 |
3 | 15 | 13 | 1 | |
4 | 10 | 17 | 2 | |
Average Max. Containment Health Index | 80 | 79 | 77 | |
Number of countries per quartile | 1 | 10 | 16 | 3 |
of Max. Containment Health Index | 2 | 14 | 8 | 2 |
3 | 18 | 14 | 1 | |
4 | 11 | 16 | 2 | |
Average Max. Economic Support Index | 65 | 68 | 70 | |
Number of countries per quartile | 1 | 7 | 8 | 1 |
of Max. Economic Support Index | 2 | 20 | 16 | 2 |
3 | 15 | 14 | 3 | |
4 | 11 | 16 | 2 | |
Predominant testing policy* | 2 | 2 | 1 | |
Number of countries per | 1 | 14 | 14 | 5 |
predominant testing policy | 2 | 25 | 23 | 3 |
3 | 15 | 18 | 0 | |
Predominant contact tracing policy | 2 | 2 | 1 | |
Number of countries per predominant | 0 | 4 | 3 | 0 |
contact tracing policy | 1 | 19 | 11 | 6 |
2 | 31 | 41 | 2 |
C 1 | C 2 | C 3 | ||
Average Max. Government Response Index | 77 | 76 | 75 | |
Number of countries per quartile | 1 | 10 | 16 | 3 |
of Max. Government Response Index | 2 | 18 | 8 | 2 |
3 | 15 | 13 | 1 | |
4 | 10 | 17 | 2 | |
Average Max. Containment Health Index | 80 | 79 | 77 | |
Number of countries per quartile | 1 | 10 | 16 | 3 |
of Max. Containment Health Index | 2 | 14 | 8 | 2 |
3 | 18 | 14 | 1 | |
4 | 11 | 16 | 2 | |
Average Max. Economic Support Index | 65 | 68 | 70 | |
Number of countries per quartile | 1 | 7 | 8 | 1 |
of Max. Economic Support Index | 2 | 20 | 16 | 2 |
3 | 15 | 14 | 3 | |
4 | 11 | 16 | 2 | |
Predominant testing policy* | 2 | 2 | 1 | |
Number of countries per | 1 | 14 | 14 | 5 |
predominant testing policy | 2 | 25 | 23 | 3 |
3 | 15 | 18 | 0 | |
Predominant contact tracing policy | 2 | 2 | 1 | |
Number of countries per predominant | 0 | 4 | 3 | 0 |
contact tracing policy | 1 | 19 | 11 | 6 |
2 | 31 | 41 | 2 |
C 1 | C 2 | C 3 | ||
Average Healthcare access | 68 | 72 | 61 | |
and quality index | ||||
Number of countries per | 1 | 15 | 12 | 3 |
quartile of Healthcare access | 2 | 18 | 10 | 3 |
and quality index | 3 | 9 | 19 | 2 |
4 | 13 | 18 | 0 | |
Average deaths per million | 289 | 285 | 281 | |
at December 1st | ||||
Number of countries per | 1 | 16 | 9 | 3 |
quartile of deaths per million | 2 | 12 | 17 | 2 |
by December 1st | 3 | 10 | 20 | 1 |
4 | 16 | 12 | 3 |
C 1 | C 2 | C 3 | ||
Average Healthcare access | 68 | 72 | 61 | |
and quality index | ||||
Number of countries per | 1 | 15 | 12 | 3 |
quartile of Healthcare access | 2 | 18 | 10 | 3 |
and quality index | 3 | 9 | 19 | 2 |
4 | 13 | 18 | 0 | |
Average deaths per million | 289 | 285 | 281 | |
at December 1st | ||||
Number of countries per | 1 | 16 | 9 | 3 |
quartile of deaths per million | 2 | 12 | 17 | 2 |
by December 1st | 3 | 10 | 20 | 1 |
4 | 16 | 12 | 3 |
Max. No. of groups per time window | |||
30 | 20 | 10 | |
Belgium | 1 | 1 | 2 |
Bolivia | 1 | 3 | 1 |
Bangladesh | 1 | 2 | 2 |
Andorra | 1 | 3 | 1 |
Chile | 1 | 1 | 2 |
Morocco | 1 | 1 | 2 |
Togo | 1 | 3 | 3 |
Australia | 2 | 3 | 3 |
South Africa | 2 | 3 | 3 |
Montenegro | 3 | 2 | 3 |
Max. No. of groups per time window | |||
30 | 20 | 10 | |
Belgium | 1 | 1 | 2 |
Bolivia | 1 | 3 | 1 |
Bangladesh | 1 | 2 | 2 |
Andorra | 1 | 3 | 1 |
Chile | 1 | 1 | 2 |
Morocco | 1 | 1 | 2 |
Togo | 1 | 3 | 3 |
Australia | 2 | 3 | 3 |
South Africa | 2 | 3 | 3 |
Montenegro | 3 | 2 | 3 |
Country | Cluster | Continent | (1) | (2) | (3) | (4) | (5) | (6) |
Uruguay | 1 | South America | 19.75 | 35.60 | 20551 | 77.91 | 0.80 | 61.31 |
Azerbaijan | 1 | Asia | 119.31 | 32.40 | 15847 | 73.00 | 0.76 | 86.31 |
Burkina Faso | 1 | Africa | 70.15 | 17.60 | 1703 | 61.58 | 0.42 | 72.62 |
Belgium | 1 | Europe | 375.56 | 41.80 | 42659 | 81.63 | 0.92 | 76.79 |
Bosnia&Herzegovina | 1 | Europe | 68.50 | 42.50 | 11714 | 77.40 | 0.77 | 75.00 |
Bolivia | 1 | South America | 10.20 | 25.40 | 6886 | 71.51 | 0.69 | 76.79 |
Bangladesh | 1 | Asia | 1265.04 | 27.50 | 3524 | 72.59 | 0.61 | 82.74 |
China | 1 | Asia | 147.67 | 38.70 | 15309 | 76.91 | 0.75 | 82.14 |
Switzerland | 1 | Europe | 214.24 | 43.10 | 57410 | 83.78 | 0.94 | 61.90 |
Germany | 1 | Europe | 237.02 | 46.60 | 45229 | 81.33 | 0.94 | 72.62 |
Dominica | 1 | North America | 98.57 | - | 9673 | 75.00 | 0.72 | 76.79 |
Dominican Republic | 1 | North America | 222.87 | 27.60 | 14601 | 74.08 | 0.74 | 81.55 |
Andorra | 1 | Europe | 163.76 | - | - | 83.73 | 0.86 | 72.02 |
Algeria | 1 | Africa | 17.35 | 29.10 | 13914 | 76.88 | 0.75 | 78.57 |
Ghana | 1 | Africa | 126.72 | 21.10 | 4228 | 64.07 | 0.59 | 76.79 |
Spain | 1 | Europe | 93.11 | 45.50 | 34272 | 83.56 | 0.89 | 77.98 |
Greece | 1 | Europe | 83.48 | 45.30 | 24574 | 82.24 | 0.87 | 84.52 |
Guatemala | 1 | North America | 157.83 | 22.90 | 7424 | 74.30 | 0.65 | 82.74 |
India | 1 | Asia | 450.42 | 28.20 | 6427 | 69.66 | 0.64 | 95.54 |
Japan | 1 | Asia | 347.78 | 48.20 | 39002 | 84.63 | 0.91 | 51.79 |
Kyrgyzstan | 1 | Asia | 32.33 | 26.30 | 3393 | 71.45 | 0.67 | - |
Canada | 1 | North America | 4.04 | 41.40 | 44018 | 82.43 | 0.93 | 72.62 |
Kenya | 1 | Africa | 87.32 | 20.00 | 2993 | 66.70 | 0.59 | 82.14 |
Armenia | 1 | Asia | 102.93 | 35.70 | 8788 | 75.09 | 0.76 | - |
Barbados | 1 | North America | 664.46 | 39.80 | 16978 | 79.19 | 0.80 | 77.98 |
Kazakhstan | 1 | Asia | 6.68 | 30.60 | 24056 | 73.60 | 0.80 | 78.57 |
Slovenia | 1 | Europe | 102.62 | 44.50 | 31401 | 81.32 | 0.90 | 83.93 |
United States | 1 | North America | 35.61 | 38.30 | 54225 | 78.86 | 0.92 | 74.40 |
Liechtenstein | 1 | Europe | 237.01 | - | - | 82.49 | 0.92 | - |
Madagascar | 1 | Africa | 43.95 | 19.60 | 1416 | 67.04 | 0.52 | 67.26 |
Bulgaria | 1 | Europe | 65.18 | 44.70 | 18563 | 75.05 | 0.81 | 74.40 |
Jamaica | 1 | North America | 266.88 | 31.40 | 8194 | 74.47 | 0.73 | 74.40 |
Lebanon | 1 | Asia | 594.56 | 31.10 | 13368 | 78.93 | 0.76 | 73.21 |
Chile | 1 | South America | 24.28 | 35.40 | 22767 | 80.18 | 0.84 | 84.82 |
Mexico | 1 | North America | 66.44 | 29.30 | 17336 | 75.05 | 0.77 | 69.05 |
Morocco | 1 | Africa | 80.08 | 29.60 | 7485 | 76.68 | 0.67 | 86.31 |
Sri Lanka | 1 | Asia | 341.96 | 34.10 | 11669 | 76.98 | 0.77 | 79.17 |
Mongolia | 1 | Asia | 1.98 | 28.60 | 11841 | 69.87 | 0.74 | 82.74 |
Nigeria | 1 | Africa | 209.59 | 18.10 | 5338 | 54.69 | 0.53 | 70.83 |
Colombia | 1 | South America | 44.22 | 32.20 | 13255 | 77.29 | 0.75 | 88.10 |
Netherlands | 1 | Europe | 508.54 | 43.20 | 48473 | 82.28 | 0.93 | 66.67 |
New Zealand | 1 | Oceania | 18.21 | 37.90 | 36086 | 82.29 | 0.92 | 82.74 |
Afghanistan | 1 | Asia | 54.42 | 18.60 | 1804 | 64.83 | 0.50 | 65.48 |
Poland | 1 | Europe | 124.03 | 41.80 | 27216 | 78.73 | 0.87 | 73.81 |
Paraguay | 1 | South America | 17.14 | 26.50 | 8827 | 74.25 | 0.70 | 79.76 |
Palestine | 1 | Asia | 778.20 | 20.40 | 4450 | 74.05 | 0.69 | 75.00 |
Qatar | 1 | Asia | 227.32 | 31.90 | 116936 | 80.23 | 0.86 | 82.14 |
Romania | 1 | Europe | 85.13 | 43.00 | 23313 | 76.05 | 0.81 | 80.95 |
Rwanda | 1 | Africa | 494.87 | 20.30 | 1854 | 69.02 | 0.52 | 85.12 |
Egypt | 1 | Africa | 98.00 | 25.30 | 10550 | 71.99 | 0.70 | 80.36 |
Russia | 1 | Europe | 8.82 | 39.60 | 24766 | 72.58 | 0.82 | 77.98 |
Thailand | 1 | Asia | 135.13 | 40.10 | 16278 | 77.15 | 0.76 | 80.06 |
Togo | 1 | Africa | 143.37 | 19.40 | 1430 | 61.04 | 0.50 | 69.05 |
Vietnam | 1 | Asia | 308.13 | 32.60 | 6172 | 75.40 | 0.69 | 83.33 |
Singapore | 1 | Asia | 7915.73 | 42.40 | 85535 | 83.62 | 0.93 | 85.71 |
Zambia | 1 | Africa | 23.00 | 17.70 | 3689 | 63.89 | 0.59 | 63.99 |
Albania | 2 | Europe | 104.87 | 38.00 | 11803 | 78.57 | 0.79 | 75.60 |
Australia | 2 | Oceania | 3.20 | 37.90 | 44649 | 83.44 | 0.94 | 82.14 |
Austria | 2 | Europe | 106.75 | 44.40 | 45437 | 81.54 | 0.91 | 86.90 |
Brunei | 2 | Asia | 81.35 | 32.40 | 71809 | 75.86 | 0.85 | 49.40 |
Brazil | 2 | South America | 25.04 | 33.50 | 14103 | 75.88 | 0.76 | 77.38 |
Cote d'Ivoire | 2 | Africa | 76.40 | 18.70 | 3601 | 57.78 | 0.49 | 68.15 |
Argentina | 2 | South America | 16.18 | 31.90 | 18934 | 76.67 | 0.83 | 89.88 |
Denmark | 2 | Europe | 136.52 | 42.30 | 46683 | 80.90 | 0.93 | 69.05 |
Belarus | 2 | Europe | 46.86 | 40.30 | 17168 | 74.79 | 0.81 | 30.36 |
Estonia | 2 | Europe | 31.03 | 42.70 | 29481 | 78.74 | 0.87 | 65.48 |
Costa Rica | 2 | North America | 96.08 | 33.60 | 15525 | 80.28 | 0.79 | 69.05 |
Honduras | 2 | North America | 82.81 | 24.90 | 4542 | 75.27 | 0.62 | 88.10 |
Serbia | 2 | Europe | 80.29 | 41.20 | 14049 | 76.00 | 0.79 | 79.17 |
Hungary | 2 | Europe | 108.04 | 43.40 | 26778 | 76.88 | 0.84 | 74.11 |
Ireland | 2 | Europe | 69.87 | 38.70 | 67335 | 82.30 | 0.94 | 82.14 |
Croatia | 2 | Europe | 73.73 | 44.00 | 22670 | 78.49 | 0.83 | 86.31 |
Iceland | 2 | Europe | 3.40 | 37.30 | 46483 | 82.99 | 0.94 | 64.29 |
Italy | 2 | Europe | 205.86 | 47.90 | 35220 | 83.51 | 0.88 | 85.42 |
El Salvador | 2 | North America | 307.81 | 27.60 | 7292 | 73.32 | 0.67 | 91.07 |
Peru | 2 | South America | 25.13 | 29.10 | 12237 | 76.74 | 0.75 | 86.31 |
Slovakia | 2 | Europe | 113.13 | 41.20 | 30155 | 77.54 | 0.86 | - |
Cyprus | 2 | Europe | 127.66 | 37.30 | 32415 | 80.98 | 0.87 | 89.29 |
Iran | 2 | Asia | 49.83 | 32.40 | 19083 | 76.68 | 0.80 | 63.99 |
Cambodia | 2 | Asia | 90.67 | 25.60 | 3645 | 69.82 | 0.58 | 51.79 |
Kuwait | 2 | Asia | 232.13 | 33.70 | 65531 | 75.49 | 0.80 | 86.90 |
Portugal | 2 | Europe | 112.37 | 46.20 | 27937 | 82.05 | 0.85 | 81.55 |
United Arab Emirates | 2 | Asia | 112.44 | 34.00 | 67293 | 77.97 | 0.86 | 86.31 |
Djibouti | 2 | Africa | 41.29 | 25.40 | 2705 | 67.11 | 0.48 | 82.14 |
Equatorial Guinea | 2 | Africa | 45.19 | 22.40 | 22605 | 58.74 | 0.59 | - |
Israel | 2 | Asia | 402.61 | 30.60 | 33132 | 82.97 | 0.90 | 89.88 |
South Korea | 2 | Asia | 527.97 | 43.40 | 35938 | 83.03 | 0.90 | 76.19 |
Maldives | 2 | Asia | 1454.43 | 30.60 | 15184 | 78.92 | 0.72 | - |
Bahrain | 2 | Asia | 1935.91 | 32.40 | 43291 | 77.29 | 0.85 | 80.36 |
United Kingdom | 2 | Europe | 272.90 | 40.80 | 39753 | 81.32 | 0.92 | 74.70 |
Philippines | 2 | Asia | 351.87 | 25.20 | 7599 | 71.23 | 0.70 | 85.12 |
Moldova | 2 | Europe | 123.66 | 37.60 | 5190 | 71.90 | 0.70 | 75.00 |
Macedonia | 2 | Europe | 82.60 | 39.10 | 13111 | 75.80 | 0.76 | - |
Finland | 2 | Europe | 18.14 | 42.80 | 40586 | 81.91 | 0.92 | 56.55 |
Malta | 2 | Europe | 1454.04 | 42.40 | 36513 | 82.53 | 0.88 | - |
Malaysia | 2 | Asia | 96.25 | 29.90 | 26808 | 76.16 | 0.80 | 81.85 |
Cuba | 2 | North America | 110.41 | 43.10 | 0 | 78.80 | 0.78 | 82.14 |
Mali | 2 | Africa | 15.20 | 16.40 | 2014 | 59.31 | 0.43 | 66.67 |
Oman | 2 | Asia | 14.98 | 30.70 | 37961 | 77.86 | 0.82 | 88.69 |
Saudi Arabia | 2 | Asia | 15.32 | 31.90 | 49045 | 75.13 | 0.85 | 87.50 |
France | 2 | Europe | 122.58 | 42.00 | 38606 | 82.66 | 0.90 | 79.17 |
Iraq | 2 | Asia | 88.13 | 20.00 | 15664 | 70.60 | 0.69 | 82.14 |
Norway | 2 | Europe | 14.46 | 39.70 | 64800 | 82.40 | 0.95 | 69.64 |
Senegal | 2 | Africa | 82.33 | 18.70 | 2471 | 67.94 | 0.51 | 70.83 |
Turkey | 2 | Asia | 104.91 | 31.60 | 25129 | 77.69 | 0.79 | 78.87 |
Trinidad and Tobago | 2 | North America | 266.89 | 36.20 | 28763 | 73.51 | 0.78 | 82.74 |
Georgia | 2 | Asia | 65.03 | 38.70 | 9745 | 73.77 | 0.78 | 85.12 |
Taiwan | 2 | Asia | 0.00 | 42.20 | - | 80.46 | - | 44.64 |
Ukraine | 2 | Europe | 77.39 | 41.40 | 7894 | 72.06 | 0.75 | 79.76 |
Venezuela | 2 | South America | 36.25 | 29.00 | 16745 | 72.06 | 0.76 | 77.98 |
D. R. of Congo | 2 | Africa | 35.88 | 17.00 | 808 | 60.68 | 0.46 | 71.13 |
Czech Republic | 2 | Europe | 137.18 | 43.30 | 32606 | 79.38 | 0.89 | 84.52 |
Indonesia | 2 | Asia | 145.73 | 29.30 | 11189 | 71.72 | 0.69 | 68.15 |
Sweden | 2 | Europe | 24.72 | 41.00 | 46949 | 82.80 | 0.93 | 55.36 |
South Africa | 2 | Africa | 46.75 | 27.30 | 12295 | 64.13 | 0.70 | 84.52 |
Cameroon | 3 | Africa | 50.89 | 18.80 | 3365 | 59.29 | 0.56 | 59.52 |
Ethiopia | 3 | Africa | 104.96 | 19.80 | 1730 | 66.60 | 0.46 | 70.24 |
Latvia | 3 | Europe | 31.21 | 43.90 | 25064 | 75.29 | 0.85 | 64.88 |
Montenegro | 3 | Europe | 46.28 | 39.10 | 16409 | 76.88 | 0.81 | - |
Pakistan | 3 | Asia | 255.57 | 23.50 | 5035 | 67.27 | 0.56 | 77.38 |
Panama | 3 | North America | 55.13 | 29.70 | 22267 | 78.51 | 0.79 | 85.71 |
Tunisia | 3 | Africa | 74.23 | 32.70 | 10849 | 76.70 | 0.74 | 76.19 |
Uzbekistan | 3 | Asia | 76.13 | 28.20 | 6253 | 71.72 | 0.71 | 83.04 |
Kosovo | 3 | Europe | 168.16 | - | 9796 | 71.95 | - | 79.76 |
Country | Cluster | Continent | (1) | (2) | (3) | (4) | (5) | (6) |
Uruguay | 1 | South America | 19.75 | 35.60 | 20551 | 77.91 | 0.80 | 61.31 |
Azerbaijan | 1 | Asia | 119.31 | 32.40 | 15847 | 73.00 | 0.76 | 86.31 |
Burkina Faso | 1 | Africa | 70.15 | 17.60 | 1703 | 61.58 | 0.42 | 72.62 |
Belgium | 1 | Europe | 375.56 | 41.80 | 42659 | 81.63 | 0.92 | 76.79 |
Bosnia&Herzegovina | 1 | Europe | 68.50 | 42.50 | 11714 | 77.40 | 0.77 | 75.00 |
Bolivia | 1 | South America | 10.20 | 25.40 | 6886 | 71.51 | 0.69 | 76.79 |
Bangladesh | 1 | Asia | 1265.04 | 27.50 | 3524 | 72.59 | 0.61 | 82.74 |
China | 1 | Asia | 147.67 | 38.70 | 15309 | 76.91 | 0.75 | 82.14 |
Switzerland | 1 | Europe | 214.24 | 43.10 | 57410 | 83.78 | 0.94 | 61.90 |
Germany | 1 | Europe | 237.02 | 46.60 | 45229 | 81.33 | 0.94 | 72.62 |
Dominica | 1 | North America | 98.57 | - | 9673 | 75.00 | 0.72 | 76.79 |
Dominican Republic | 1 | North America | 222.87 | 27.60 | 14601 | 74.08 | 0.74 | 81.55 |
Andorra | 1 | Europe | 163.76 | - | - | 83.73 | 0.86 | 72.02 |
Algeria | 1 | Africa | 17.35 | 29.10 | 13914 | 76.88 | 0.75 | 78.57 |
Ghana | 1 | Africa | 126.72 | 21.10 | 4228 | 64.07 | 0.59 | 76.79 |
Spain | 1 | Europe | 93.11 | 45.50 | 34272 | 83.56 | 0.89 | 77.98 |
Greece | 1 | Europe | 83.48 | 45.30 | 24574 | 82.24 | 0.87 | 84.52 |
Guatemala | 1 | North America | 157.83 | 22.90 | 7424 | 74.30 | 0.65 | 82.74 |
India | 1 | Asia | 450.42 | 28.20 | 6427 | 69.66 | 0.64 | 95.54 |
Japan | 1 | Asia | 347.78 | 48.20 | 39002 | 84.63 | 0.91 | 51.79 |
Kyrgyzstan | 1 | Asia | 32.33 | 26.30 | 3393 | 71.45 | 0.67 | - |
Canada | 1 | North America | 4.04 | 41.40 | 44018 | 82.43 | 0.93 | 72.62 |
Kenya | 1 | Africa | 87.32 | 20.00 | 2993 | 66.70 | 0.59 | 82.14 |
Armenia | 1 | Asia | 102.93 | 35.70 | 8788 | 75.09 | 0.76 | - |
Barbados | 1 | North America | 664.46 | 39.80 | 16978 | 79.19 | 0.80 | 77.98 |
Kazakhstan | 1 | Asia | 6.68 | 30.60 | 24056 | 73.60 | 0.80 | 78.57 |
Slovenia | 1 | Europe | 102.62 | 44.50 | 31401 | 81.32 | 0.90 | 83.93 |
United States | 1 | North America | 35.61 | 38.30 | 54225 | 78.86 | 0.92 | 74.40 |
Liechtenstein | 1 | Europe | 237.01 | - | - | 82.49 | 0.92 | - |
Madagascar | 1 | Africa | 43.95 | 19.60 | 1416 | 67.04 | 0.52 | 67.26 |
Bulgaria | 1 | Europe | 65.18 | 44.70 | 18563 | 75.05 | 0.81 | 74.40 |
Jamaica | 1 | North America | 266.88 | 31.40 | 8194 | 74.47 | 0.73 | 74.40 |
Lebanon | 1 | Asia | 594.56 | 31.10 | 13368 | 78.93 | 0.76 | 73.21 |
Chile | 1 | South America | 24.28 | 35.40 | 22767 | 80.18 | 0.84 | 84.82 |
Mexico | 1 | North America | 66.44 | 29.30 | 17336 | 75.05 | 0.77 | 69.05 |
Morocco | 1 | Africa | 80.08 | 29.60 | 7485 | 76.68 | 0.67 | 86.31 |
Sri Lanka | 1 | Asia | 341.96 | 34.10 | 11669 | 76.98 | 0.77 | 79.17 |
Mongolia | 1 | Asia | 1.98 | 28.60 | 11841 | 69.87 | 0.74 | 82.74 |
Nigeria | 1 | Africa | 209.59 | 18.10 | 5338 | 54.69 | 0.53 | 70.83 |
Colombia | 1 | South America | 44.22 | 32.20 | 13255 | 77.29 | 0.75 | 88.10 |
Netherlands | 1 | Europe | 508.54 | 43.20 | 48473 | 82.28 | 0.93 | 66.67 |
New Zealand | 1 | Oceania | 18.21 | 37.90 | 36086 | 82.29 | 0.92 | 82.74 |
Afghanistan | 1 | Asia | 54.42 | 18.60 | 1804 | 64.83 | 0.50 | 65.48 |
Poland | 1 | Europe | 124.03 | 41.80 | 27216 | 78.73 | 0.87 | 73.81 |
Paraguay | 1 | South America | 17.14 | 26.50 | 8827 | 74.25 | 0.70 | 79.76 |
Palestine | 1 | Asia | 778.20 | 20.40 | 4450 | 74.05 | 0.69 | 75.00 |
Qatar | 1 | Asia | 227.32 | 31.90 | 116936 | 80.23 | 0.86 | 82.14 |
Romania | 1 | Europe | 85.13 | 43.00 | 23313 | 76.05 | 0.81 | 80.95 |
Rwanda | 1 | Africa | 494.87 | 20.30 | 1854 | 69.02 | 0.52 | 85.12 |
Egypt | 1 | Africa | 98.00 | 25.30 | 10550 | 71.99 | 0.70 | 80.36 |
Russia | 1 | Europe | 8.82 | 39.60 | 24766 | 72.58 | 0.82 | 77.98 |
Thailand | 1 | Asia | 135.13 | 40.10 | 16278 | 77.15 | 0.76 | 80.06 |
Togo | 1 | Africa | 143.37 | 19.40 | 1430 | 61.04 | 0.50 | 69.05 |
Vietnam | 1 | Asia | 308.13 | 32.60 | 6172 | 75.40 | 0.69 | 83.33 |
Singapore | 1 | Asia | 7915.73 | 42.40 | 85535 | 83.62 | 0.93 | 85.71 |
Zambia | 1 | Africa | 23.00 | 17.70 | 3689 | 63.89 | 0.59 | 63.99 |
Albania | 2 | Europe | 104.87 | 38.00 | 11803 | 78.57 | 0.79 | 75.60 |
Australia | 2 | Oceania | 3.20 | 37.90 | 44649 | 83.44 | 0.94 | 82.14 |
Austria | 2 | Europe | 106.75 | 44.40 | 45437 | 81.54 | 0.91 | 86.90 |
Brunei | 2 | Asia | 81.35 | 32.40 | 71809 | 75.86 | 0.85 | 49.40 |
Brazil | 2 | South America | 25.04 | 33.50 | 14103 | 75.88 | 0.76 | 77.38 |
Cote d'Ivoire | 2 | Africa | 76.40 | 18.70 | 3601 | 57.78 | 0.49 | 68.15 |
Argentina | 2 | South America | 16.18 | 31.90 | 18934 | 76.67 | 0.83 | 89.88 |
Denmark | 2 | Europe | 136.52 | 42.30 | 46683 | 80.90 | 0.93 | 69.05 |
Belarus | 2 | Europe | 46.86 | 40.30 | 17168 | 74.79 | 0.81 | 30.36 |
Estonia | 2 | Europe | 31.03 | 42.70 | 29481 | 78.74 | 0.87 | 65.48 |
Costa Rica | 2 | North America | 96.08 | 33.60 | 15525 | 80.28 | 0.79 | 69.05 |
Honduras | 2 | North America | 82.81 | 24.90 | 4542 | 75.27 | 0.62 | 88.10 |
Serbia | 2 | Europe | 80.29 | 41.20 | 14049 | 76.00 | 0.79 | 79.17 |
Hungary | 2 | Europe | 108.04 | 43.40 | 26778 | 76.88 | 0.84 | 74.11 |
Ireland | 2 | Europe | 69.87 | 38.70 | 67335 | 82.30 | 0.94 | 82.14 |
Croatia | 2 | Europe | 73.73 | 44.00 | 22670 | 78.49 | 0.83 | 86.31 |
Iceland | 2 | Europe | 3.40 | 37.30 | 46483 | 82.99 | 0.94 | 64.29 |
Italy | 2 | Europe | 205.86 | 47.90 | 35220 | 83.51 | 0.88 | 85.42 |
El Salvador | 2 | North America | 307.81 | 27.60 | 7292 | 73.32 | 0.67 | 91.07 |
Peru | 2 | South America | 25.13 | 29.10 | 12237 | 76.74 | 0.75 | 86.31 |
Slovakia | 2 | Europe | 113.13 | 41.20 | 30155 | 77.54 | 0.86 | - |
Cyprus | 2 | Europe | 127.66 | 37.30 | 32415 | 80.98 | 0.87 | 89.29 |
Iran | 2 | Asia | 49.83 | 32.40 | 19083 | 76.68 | 0.80 | 63.99 |
Cambodia | 2 | Asia | 90.67 | 25.60 | 3645 | 69.82 | 0.58 | 51.79 |
Kuwait | 2 | Asia | 232.13 | 33.70 | 65531 | 75.49 | 0.80 | 86.90 |
Portugal | 2 | Europe | 112.37 | 46.20 | 27937 | 82.05 | 0.85 | 81.55 |
United Arab Emirates | 2 | Asia | 112.44 | 34.00 | 67293 | 77.97 | 0.86 | 86.31 |
Djibouti | 2 | Africa | 41.29 | 25.40 | 2705 | 67.11 | 0.48 | 82.14 |
Equatorial Guinea | 2 | Africa | 45.19 | 22.40 | 22605 | 58.74 | 0.59 | - |
Israel | 2 | Asia | 402.61 | 30.60 | 33132 | 82.97 | 0.90 | 89.88 |
South Korea | 2 | Asia | 527.97 | 43.40 | 35938 | 83.03 | 0.90 | 76.19 |
Maldives | 2 | Asia | 1454.43 | 30.60 | 15184 | 78.92 | 0.72 | - |
Bahrain | 2 | Asia | 1935.91 | 32.40 | 43291 | 77.29 | 0.85 | 80.36 |
United Kingdom | 2 | Europe | 272.90 | 40.80 | 39753 | 81.32 | 0.92 | 74.70 |
Philippines | 2 | Asia | 351.87 | 25.20 | 7599 | 71.23 | 0.70 | 85.12 |
Moldova | 2 | Europe | 123.66 | 37.60 | 5190 | 71.90 | 0.70 | 75.00 |
Macedonia | 2 | Europe | 82.60 | 39.10 | 13111 | 75.80 | 0.76 | - |
Finland | 2 | Europe | 18.14 | 42.80 | 40586 | 81.91 | 0.92 | 56.55 |
Malta | 2 | Europe | 1454.04 | 42.40 | 36513 | 82.53 | 0.88 | - |
Malaysia | 2 | Asia | 96.25 | 29.90 | 26808 | 76.16 | 0.80 | 81.85 |
Cuba | 2 | North America | 110.41 | 43.10 | 0 | 78.80 | 0.78 | 82.14 |
Mali | 2 | Africa | 15.20 | 16.40 | 2014 | 59.31 | 0.43 | 66.67 |
Oman | 2 | Asia | 14.98 | 30.70 | 37961 | 77.86 | 0.82 | 88.69 |
Saudi Arabia | 2 | Asia | 15.32 | 31.90 | 49045 | 75.13 | 0.85 | 87.50 |
France | 2 | Europe | 122.58 | 42.00 | 38606 | 82.66 | 0.90 | 79.17 |
Iraq | 2 | Asia | 88.13 | 20.00 | 15664 | 70.60 | 0.69 | 82.14 |
Norway | 2 | Europe | 14.46 | 39.70 | 64800 | 82.40 | 0.95 | 69.64 |
Senegal | 2 | Africa | 82.33 | 18.70 | 2471 | 67.94 | 0.51 | 70.83 |
Turkey | 2 | Asia | 104.91 | 31.60 | 25129 | 77.69 | 0.79 | 78.87 |
Trinidad and Tobago | 2 | North America | 266.89 | 36.20 | 28763 | 73.51 | 0.78 | 82.74 |
Georgia | 2 | Asia | 65.03 | 38.70 | 9745 | 73.77 | 0.78 | 85.12 |
Taiwan | 2 | Asia | 0.00 | 42.20 | - | 80.46 | - | 44.64 |
Ukraine | 2 | Europe | 77.39 | 41.40 | 7894 | 72.06 | 0.75 | 79.76 |
Venezuela | 2 | South America | 36.25 | 29.00 | 16745 | 72.06 | 0.76 | 77.98 |
D. R. of Congo | 2 | Africa | 35.88 | 17.00 | 808 | 60.68 | 0.46 | 71.13 |
Czech Republic | 2 | Europe | 137.18 | 43.30 | 32606 | 79.38 | 0.89 | 84.52 |
Indonesia | 2 | Asia | 145.73 | 29.30 | 11189 | 71.72 | 0.69 | 68.15 |
Sweden | 2 | Europe | 24.72 | 41.00 | 46949 | 82.80 | 0.93 | 55.36 |
South Africa | 2 | Africa | 46.75 | 27.30 | 12295 | 64.13 | 0.70 | 84.52 |
Cameroon | 3 | Africa | 50.89 | 18.80 | 3365 | 59.29 | 0.56 | 59.52 |
Ethiopia | 3 | Africa | 104.96 | 19.80 | 1730 | 66.60 | 0.46 | 70.24 |
Latvia | 3 | Europe | 31.21 | 43.90 | 25064 | 75.29 | 0.85 | 64.88 |
Montenegro | 3 | Europe | 46.28 | 39.10 | 16409 | 76.88 | 0.81 | - |
Pakistan | 3 | Asia | 255.57 | 23.50 | 5035 | 67.27 | 0.56 | 77.38 |
Panama | 3 | North America | 55.13 | 29.70 | 22267 | 78.51 | 0.79 | 85.71 |
Tunisia | 3 | Africa | 74.23 | 32.70 | 10849 | 76.70 | 0.74 | 76.19 |
Uzbekistan | 3 | Asia | 76.13 | 28.20 | 6253 | 71.72 | 0.71 | 83.04 |
Kosovo | 3 | Europe | 168.16 | - | 9796 | 71.95 | - | 79.76 |
Country | Cluster | Continent | (7) | (8) | (9) | (10) | (11) | (12) |
Uruguay | 1 | South America | 61.11 | 87.50 | 3 | 1 | 72.00 | 22.45 |
Azerbaijan | 1 | Asia | 92.36 | 50.00 | 2 | 2 | 64.50 | 141.33 |
Burkina Faso | 1 | Africa | 84.72 | - | 1 | 2 | 42.90 | 3.25 |
Belgium | 1 | Europe | 75.00 | 100.00 | 2 | 2 | 87.90 | 1448.37 |
Bosnia&Herzegovina | 1 | Europe | 81.25 | 37.50 | 2 | 0 | 78.20 | 831.20 |
Bolivia | 1 | South America | 81.25 | 50.00 | 1 | 1 | 59.20 | 767.84 |
Bangladesh | 1 | Asia | 88.19 | 75.00 | 2 | 1 | 51.70 | 40.53 |
China | 1 | Asia | 85.42 | 62.50 | 3 | 2 | 74.20 | 3.30 |
Switzerland | 1 | Europe | 61.81 | 62.50 | 2 | 2 | 91.80 | 570.79 |
Germany | 1 | Europe | 74.31 | 62.50 | 3 | 2 | 86.40 | 205.02 |
Dominica | 1 | North America | 82.64 | 75.00 | 3 | 2 | 58.10 | 0.00 |
Dominican Republic | 1 | North America | 90.97 | 25.00 | 2 | 1 | 62.50 | 215.07 |
Andorra | 1 | Europe | 67.36 | 100.00 | 2 | 1 | 94.60 | 983.63 |
Algeria | 1 | Africa | 83.33 | 62.50 | 1 | 0 | 63.70 | 55.80 |
Ghana | 1 | Africa | 81.25 | 50.00 | 3 | 2 | 49.70 | 10.40 |
Spain | 1 | Europe | 76.39 | 87.50 | 2 | 1 | 89.60 | 973.40 |
Greece | 1 | Europe | 84.03 | 87.50 | 3 | 2 | 87.00 | 241.48 |
Guatemala | 1 | North America | 84.03 | 75.00 | 2 | 0 | 55.70 | 233.21 |
India | 1 | Asia | 98.96 | 75.00 | 2 | 2 | 44.80 | 99.73 |
Japan | 1 | Asia | 52.08 | 75.00 | 2 | 1 | 89.00 | 16.68 |
Kyrgyzstan | 1 | Asia | - | - | 1 | 1 | 60.40 | 195.43 |
Canada | 1 | North America | 72.22 | 75.00 | 3 | 1 | 87.60 | 324.01 |
Kenya | 1 | Africa | 87.50 | 50.00 | 3 | 1 | 48.70 | 27.41 |
Armenia | 1 | Asia | - | - | - | - | 67.50 | 740.07 |
Barbados | 1 | North America | 84.72 | 62.50 | 2 | 2 | 66.80 | 24.36 |
Kazakhstan | 1 | Asia | 85.76 | 37.50 | 3 | 2 | 61.10 | 129.63 |
Slovenia | 1 | Europe | 85.42 | 75.00 | 2 | 2 | 87.40 | 716.71 |
United States | 1 | North America | 76.39 | 62.50 | 3 | 1 | 81.30 | 817.64 |
Liechtenstein | 1 | Europe | - | - | - | - | - | 419.54 |
Madagascar | 1 | Africa | 78.47 | 50.00 | 1 | 1 | 43.70 | 9.06 |
Bulgaria | 1 | Europe | 72.22 | 87.50 | 1 | 2 | 71.40 | 602.73 |
Jamaica | 1 | North America | 78.47 | 50.00 | 1 | 1 | 63.70 | 87.13 |
Lebanon | 1 | Asia | 81.25 | 25.00 | 2 | 1 | 80.00 | 151.35 |
Chile | 1 | South America | 83.68 | 100.00 | 2 | 2 | 76.00 | 807.17 |
Mexico | 1 | North America | 76.04 | 75.00 | 1 | 1 | 62.60 | 828.07 |
Morocco | 1 | Africa | 88.19 | 75.00 | 3 | 1 | 61.30 | 160.25 |
Sri Lanka | 1 | Asia | 88.89 | 50.00 | 2 | 2 | 72.80 | 5.70 |
Mongolia | 1 | Asia | 84.03 | 75.00 | 2 | 2 | 58.50 | 0.00 |
Nigeria | 1 | Africa | 80.56 | 62.50 | 1 | 2 | 51.30 | 5.71 |
Colombia | 1 | South America | 90.28 | 75.00 | 2 | 2 | 67.80 | 725.86 |
Netherlands | 1 | Europe | 67.36 | 62.50 | 2 | 2 | 89.50 | 555.48 |
New Zealand | 1 | Oceania | 86.11 | 87.50 | 2 | 2 | 86.20 | 5.18 |
Afghanistan | 1 | Asia | 76.39 | 25.00 | 1 | 1 | 32.50 | 46.16 |
Poland | 1 | Europe | 73.61 | 75.00 | 2 | 2 | 79.60 | 465.01 |
Paraguay | 1 | South America | 80.56 | 75.00 | 1 | 2 | 60.40 | 248.30 |
Palestine | 1 | Asia | 79.17 | 50.00 | 1 | 1 | 70.50 | 146.43 |
Qatar | 1 | Asia | 87.50 | 62.50 | 3 | 2 | 85.20 | 82.61 |
Romania | 1 | Europe | 79.86 | 87.50 | 2 | 1 | 74.40 | 599.35 |
Rwanda | 1 | Africa | 90.97 | 62.50 | 3 | 2 | 47.80 | 3.78 |
Egypt | 1 | Africa | 81.25 | 75.00 | 2 | 2 | 61.00 | 65.14 |
Russia | 1 | Europe | 80.56 | 62.50 | 3 | 2 | 71.70 | 274.44 |
Thailand | 1 | Asia | 76.74 | 100.00 | 2 | 2 | 70.80 | 0.86 |
Togo | 1 | Africa | 72.22 | 75.00 | 1 | 0 | 44.30 | 7.73 |
Vietnam | 1 | Asia | 93.06 | 50.00 | 3 | 2 | 66.30 | 0.36 |
Singapore | 1 | Asia | 86.11 | 100.00 | 2 | 2 | 86.30 | 4.96 |
Zambia | 1 | Africa | 70.49 | 25.00 | 1 | 2 | 41.60 | 19.42 |
Albania | 2 | Europe | 77.08 | 75.00 | 1 | 2 | 78.20 | 285.64 |
Australia | 2 | Oceania | 83.33 | 75.00 | 3 | 2 | 89.80 | 35.61 |
Austria | 2 | Europe | 84.72 | 100.00 | 3 | 2 | 88.20 | 369.18 |
Brunei | 2 | Asia | 55.56 | 50.00 | 2 | 1 | 70.00 | 6.86 |
Brazil | 2 | South America | 81.94 | 50.00 | 2 | 2 | 64.90 | 817.73 |
Cote d'Ivoire | 2 | Africa | 75.35 | 75.00 | 2 | 2 | 42.40 | 5.00 |
Argentina | 2 | South America | 92.36 | 75.00 | 1 | 2 | 68.40 | 861.32 |
Denmark | 2 | Europe | 65.97 | 100.00 | 3 | 2 | 85.70 | 146.06 |
Belarus | 2 | Europe | 35.42 | - | 3 | 2 | 74.40 | 123.40 |
Estonia | 2 | Europe | 63.89 | 87.50 | 2 | 0 | 81.40 | 91.22 |
Costa Rica | 2 | North America | 72.22 | 50.00 | 1 | 2 | 72.90 | 339.80 |
Honduras | 2 | North America | 88.19 | 87.50 | 1 | 1 | 53.90 | 294.61 |
Serbia | 2 | Europe | 86.11 | 62.50 | 1 | 2 | 75.40 | 242.78 |
Hungary | 2 | Europe | 72.22 | 87.50 | 1 | 2 | 79.60 | 515.20 |
Ireland | 2 | Europe | 79.17 | 100.00 | 2 | 2 | 88.40 | 419.01 |
Croatia | 2 | Europe | 86.11 | 87.50 | 3 | 2 | 81.60 | 453.32 |
Iceland | 2 | Europe | 60.42 | 100.00 | 3 | 2 | 93.60 | 79.12 |
Italy | 2 | Europe | 91.32 | 75.00 | 2 | 2 | 88.70 | 932.18 |
El Salvador | 2 | North America | 93.75 | 75.00 | 3 | 1 | 64.40 | 172.67 |
Peru | 2 | South America | 88.19 | 75.00 | 2 | 2 | 69.60 | 1090.81 |
Slovakia | 2 | Europe | - | - | 1 | 2 | 78.60 | 158.99 |
Cyprus | 2 | Europe | 87.50 | 100.00 | 3 | 2 | 85.30 | 55.94 |
Iran | 2 | Asia | 68.06 | 62.50 | 2 | 0 | 71.10 | 578.95 |
Cambodia | 2 | Asia | 60.42 | 62.50 | 1 | 1 | 50.70 | 0.00 |
Kuwait | 2 | Asia | 95.14 | 37.50 | 2 | 2 | 82.00 | 206.30 |
Portugal | 2 | Europe | 82.64 | 75.00 | 3 | 1 | 84.50 | 448.87 |
United Arab Emirates | 2 | Asia | 92.36 | 50.00 | 3 | 2 | 72.20 | 58.24 |
Djibouti | 2 | Africa | 93.75 | 12.50 | 2 | 2 | 44.70 | 61.74 |
Equatorial Guinea | 2 | Africa | - | - | - | - | 48.40 | 60.59 |
Israel | 2 | Asia | 88.19 | 100.00 | 1 | 2 | 85.50 | 332.39 |
South Korea | 2 | Asia | 80.56 | 50.00 | 3 | 2 | 85.80 | 10.26 |
Maldives | 2 | Asia | - | - | - | - | 75.50 | 86.95 |
Bahrain | 2 | Asia | 79.17 | 87.50 | 3 | 2 | 79.00 | 200.40 |
United Kingdom | 2 | Europe | 70.49 | 100.00 | 2 | 2 | 84.60 | 871.28 |
Philippines | 2 | Asia | 88.89 | 75.00 | 2 | 2 | 52.00 | 76.82 |
Moldova | 2 | Europe | 81.25 | 37.50 | 2 | 2 | 73.10 | 575.86 |
Macedonia | 2 | Europe | - | - | - | - | 76.00 | 860.14 |
Finland | 2 | Europe | 57.64 | 75.00 | 2 | 1 | 89.60 | 72.01 |
Malta | 2 | Europe | - | - | - | - | 85.10 | 319.34 |
Malaysia | 2 | Asia | 82.99 | 75.00 | 3 | 2 | 66.60 | 11.22 |
Cuba | 2 | North America | 87.50 | 62.50 | 1 | 2 | 73.50 | 12.01 |
Mali | 2 | Africa | 69.44 | 50.00 | 1 | 2 | 45.60 | 7.90 |
Oman | 2 | Asia | 93.06 | 62.50 | 2 | 1 | 77.10 | 280.03 |
Saudi Arabia | 2 | Asia | 91.67 | 62.50 | 3 | 2 | 79.40 | 169.67 |
France | 2 | Europe | 82.99 | 100.00 | 3 | 2 | 87.90 | 809.23 |
Iraq | 2 | Asia | 90.28 | 50.00 | 2 | 1 | 60.10 | 305.95 |
Norway | 2 | Europe | 66.67 | 87.50 | 2 | 2 | 90.50 | 61.61 |
Senegal | 2 | Africa | 72.22 | 75.00 | 2 | 2 | 44.40 | 19.89 |
Turkey | 2 | Asia | 77.43 | 87.50 | 2 | 2 | 76.20 | 165.24 |
Trinidad and Tobago | 2 | North America | 84.03 | 75.00 | 1 | 2 | 62.10 | 85.75 |
Georgia | 2 | Asia | 93.06 | 37.50 | 2 | 2 | 62.10 | 326.63 |
Taiwan | 2 | Asia | 45.83 | 37.50 | 3 | 2 | 77.60 | 0.29 |
Ukraine | 2 | Europe | 86.81 | 37.50 | 2 | 2 | 72.70 | 296.38 |
Venezuela | 2 | South America | 82.64 | 50.00 | 3 | 0 | 64.70 | 31.69 |
D. R. of Congo | 2 | Africa | 74.65 | 50.00 | 1 | 1 | 40.40 | 3.74 |
Czech Republic | 2 | Europe | 81.94 | 100.00 | 2 | 2 | 84.80 | 785.04 |
Indonesia | 2 | Asia | 75.35 | 37.50 | 1 | 1 | 49.20 | 62.45 |
Sweden | 2 | Europe | 58.33 | 62.50 | 2 | 1 | 90.50 | 673.12 |
South Africa | 2 | Africa | 86.11 | 75.00 | 3 | 2 | 52.00 | 364.94 |
Cameroon | 3 | Africa | 69.44 | 37.50 | 2 | 1 | 44.40 | 16.61 |
Ethiopia | 3 | Africa | 73.61 | 50.00 | 1 | 1 | 44.20 | 14.87 |
Latvia | 3 | Europe | 60.07 | 100.00 | 1 | 2 | 77.70 | 111.34 |
Montenegro | 3 | Europe | - | - | - | - | 80.70 | 802.47 |
Pakistan | 3 | Asia | 81.94 | 75.00 | 2 | 1 | 43.10 | 36.97 |
Panama | 3 | North America | 87.50 | 75.00 | 2 | 1 | 64.40 | 718.00 |
Tunisia | 3 | Africa | 76.39 | 75.00 | 1 | 1 | 70.10 | 275.84 |
Uzbekistan | 3 | Asia | 88.54 | 50.00 | 1 | 2 | 62.30 | 18.26 |
Kosovo | 3 | Europe | 76.39 | 100.00 | 1 | 1 | - | 530.84 |
Country | Cluster | Continent | (7) | (8) | (9) | (10) | (11) | (12) |
Uruguay | 1 | South America | 61.11 | 87.50 | 3 | 1 | 72.00 | 22.45 |
Azerbaijan | 1 | Asia | 92.36 | 50.00 | 2 | 2 | 64.50 | 141.33 |
Burkina Faso | 1 | Africa | 84.72 | - | 1 | 2 | 42.90 | 3.25 |
Belgium | 1 | Europe | 75.00 | 100.00 | 2 | 2 | 87.90 | 1448.37 |
Bosnia&Herzegovina | 1 | Europe | 81.25 | 37.50 | 2 | 0 | 78.20 | 831.20 |
Bolivia | 1 | South America | 81.25 | 50.00 | 1 | 1 | 59.20 | 767.84 |
Bangladesh | 1 | Asia | 88.19 | 75.00 | 2 | 1 | 51.70 | 40.53 |
China | 1 | Asia | 85.42 | 62.50 | 3 | 2 | 74.20 | 3.30 |
Switzerland | 1 | Europe | 61.81 | 62.50 | 2 | 2 | 91.80 | 570.79 |
Germany | 1 | Europe | 74.31 | 62.50 | 3 | 2 | 86.40 | 205.02 |
Dominica | 1 | North America | 82.64 | 75.00 | 3 | 2 | 58.10 | 0.00 |
Dominican Republic | 1 | North America | 90.97 | 25.00 | 2 | 1 | 62.50 | 215.07 |
Andorra | 1 | Europe | 67.36 | 100.00 | 2 | 1 | 94.60 | 983.63 |
Algeria | 1 | Africa | 83.33 | 62.50 | 1 | 0 | 63.70 | 55.80 |
Ghana | 1 | Africa | 81.25 | 50.00 | 3 | 2 | 49.70 | 10.40 |
Spain | 1 | Europe | 76.39 | 87.50 | 2 | 1 | 89.60 | 973.40 |
Greece | 1 | Europe | 84.03 | 87.50 | 3 | 2 | 87.00 | 241.48 |
Guatemala | 1 | North America | 84.03 | 75.00 | 2 | 0 | 55.70 | 233.21 |
India | 1 | Asia | 98.96 | 75.00 | 2 | 2 | 44.80 | 99.73 |
Japan | 1 | Asia | 52.08 | 75.00 | 2 | 1 | 89.00 | 16.68 |
Kyrgyzstan | 1 | Asia | - | - | 1 | 1 | 60.40 | 195.43 |
Canada | 1 | North America | 72.22 | 75.00 | 3 | 1 | 87.60 | 324.01 |
Kenya | 1 | Africa | 87.50 | 50.00 | 3 | 1 | 48.70 | 27.41 |
Armenia | 1 | Asia | - | - | - | - | 67.50 | 740.07 |
Barbados | 1 | North America | 84.72 | 62.50 | 2 | 2 | 66.80 | 24.36 |
Kazakhstan | 1 | Asia | 85.76 | 37.50 | 3 | 2 | 61.10 | 129.63 |
Slovenia | 1 | Europe | 85.42 | 75.00 | 2 | 2 | 87.40 | 716.71 |
United States | 1 | North America | 76.39 | 62.50 | 3 | 1 | 81.30 | 817.64 |
Liechtenstein | 1 | Europe | - | - | - | - | - | 419.54 |
Madagascar | 1 | Africa | 78.47 | 50.00 | 1 | 1 | 43.70 | 9.06 |
Bulgaria | 1 | Europe | 72.22 | 87.50 | 1 | 2 | 71.40 | 602.73 |
Jamaica | 1 | North America | 78.47 | 50.00 | 1 | 1 | 63.70 | 87.13 |
Lebanon | 1 | Asia | 81.25 | 25.00 | 2 | 1 | 80.00 | 151.35 |
Chile | 1 | South America | 83.68 | 100.00 | 2 | 2 | 76.00 | 807.17 |
Mexico | 1 | North America | 76.04 | 75.00 | 1 | 1 | 62.60 | 828.07 |
Morocco | 1 | Africa | 88.19 | 75.00 | 3 | 1 | 61.30 | 160.25 |
Sri Lanka | 1 | Asia | 88.89 | 50.00 | 2 | 2 | 72.80 | 5.70 |
Mongolia | 1 | Asia | 84.03 | 75.00 | 2 | 2 | 58.50 | 0.00 |
Nigeria | 1 | Africa | 80.56 | 62.50 | 1 | 2 | 51.30 | 5.71 |
Colombia | 1 | South America | 90.28 | 75.00 | 2 | 2 | 67.80 | 725.86 |
Netherlands | 1 | Europe | 67.36 | 62.50 | 2 | 2 | 89.50 | 555.48 |
New Zealand | 1 | Oceania | 86.11 | 87.50 | 2 | 2 | 86.20 | 5.18 |
Afghanistan | 1 | Asia | 76.39 | 25.00 | 1 | 1 | 32.50 | 46.16 |
Poland | 1 | Europe | 73.61 | 75.00 | 2 | 2 | 79.60 | 465.01 |
Paraguay | 1 | South America | 80.56 | 75.00 | 1 | 2 | 60.40 | 248.30 |
Palestine | 1 | Asia | 79.17 | 50.00 | 1 | 1 | 70.50 | 146.43 |
Qatar | 1 | Asia | 87.50 | 62.50 | 3 | 2 | 85.20 | 82.61 |
Romania | 1 | Europe | 79.86 | 87.50 | 2 | 1 | 74.40 | 599.35 |
Rwanda | 1 | Africa | 90.97 | 62.50 | 3 | 2 | 47.80 | 3.78 |
Egypt | 1 | Africa | 81.25 | 75.00 | 2 | 2 | 61.00 | 65.14 |
Russia | 1 | Europe | 80.56 | 62.50 | 3 | 2 | 71.70 | 274.44 |
Thailand | 1 | Asia | 76.74 | 100.00 | 2 | 2 | 70.80 | 0.86 |
Togo | 1 | Africa | 72.22 | 75.00 | 1 | 0 | 44.30 | 7.73 |
Vietnam | 1 | Asia | 93.06 | 50.00 | 3 | 2 | 66.30 | 0.36 |
Singapore | 1 | Asia | 86.11 | 100.00 | 2 | 2 | 86.30 | 4.96 |
Zambia | 1 | Africa | 70.49 | 25.00 | 1 | 2 | 41.60 | 19.42 |
Albania | 2 | Europe | 77.08 | 75.00 | 1 | 2 | 78.20 | 285.64 |
Australia | 2 | Oceania | 83.33 | 75.00 | 3 | 2 | 89.80 | 35.61 |
Austria | 2 | Europe | 84.72 | 100.00 | 3 | 2 | 88.20 | 369.18 |
Brunei | 2 | Asia | 55.56 | 50.00 | 2 | 1 | 70.00 | 6.86 |
Brazil | 2 | South America | 81.94 | 50.00 | 2 | 2 | 64.90 | 817.73 |
Cote d'Ivoire | 2 | Africa | 75.35 | 75.00 | 2 | 2 | 42.40 | 5.00 |
Argentina | 2 | South America | 92.36 | 75.00 | 1 | 2 | 68.40 | 861.32 |
Denmark | 2 | Europe | 65.97 | 100.00 | 3 | 2 | 85.70 | 146.06 |
Belarus | 2 | Europe | 35.42 | - | 3 | 2 | 74.40 | 123.40 |
Estonia | 2 | Europe | 63.89 | 87.50 | 2 | 0 | 81.40 | 91.22 |
Costa Rica | 2 | North America | 72.22 | 50.00 | 1 | 2 | 72.90 | 339.80 |
Honduras | 2 | North America | 88.19 | 87.50 | 1 | 1 | 53.90 | 294.61 |
Serbia | 2 | Europe | 86.11 | 62.50 | 1 | 2 | 75.40 | 242.78 |
Hungary | 2 | Europe | 72.22 | 87.50 | 1 | 2 | 79.60 | 515.20 |
Ireland | 2 | Europe | 79.17 | 100.00 | 2 | 2 | 88.40 | 419.01 |
Croatia | 2 | Europe | 86.11 | 87.50 | 3 | 2 | 81.60 | 453.32 |
Iceland | 2 | Europe | 60.42 | 100.00 | 3 | 2 | 93.60 | 79.12 |
Italy | 2 | Europe | 91.32 | 75.00 | 2 | 2 | 88.70 | 932.18 |
El Salvador | 2 | North America | 93.75 | 75.00 | 3 | 1 | 64.40 | 172.67 |
Peru | 2 | South America | 88.19 | 75.00 | 2 | 2 | 69.60 | 1090.81 |
Slovakia | 2 | Europe | - | - | 1 | 2 | 78.60 | 158.99 |
Cyprus | 2 | Europe | 87.50 | 100.00 | 3 | 2 | 85.30 | 55.94 |
Iran | 2 | Asia | 68.06 | 62.50 | 2 | 0 | 71.10 | 578.95 |
Cambodia | 2 | Asia | 60.42 | 62.50 | 1 | 1 | 50.70 | 0.00 |
Kuwait | 2 | Asia | 95.14 | 37.50 | 2 | 2 | 82.00 | 206.30 |
Portugal | 2 | Europe | 82.64 | 75.00 | 3 | 1 | 84.50 | 448.87 |
United Arab Emirates | 2 | Asia | 92.36 | 50.00 | 3 | 2 | 72.20 | 58.24 |
Djibouti | 2 | Africa | 93.75 | 12.50 | 2 | 2 | 44.70 | 61.74 |
Equatorial Guinea | 2 | Africa | - | - | - | - | 48.40 | 60.59 |
Israel | 2 | Asia | 88.19 | 100.00 | 1 | 2 | 85.50 | 332.39 |
South Korea | 2 | Asia | 80.56 | 50.00 | 3 | 2 | 85.80 | 10.26 |
Maldives | 2 | Asia | - | - | - | - | 75.50 | 86.95 |
Bahrain | 2 | Asia | 79.17 | 87.50 | 3 | 2 | 79.00 | 200.40 |
United Kingdom | 2 | Europe | 70.49 | 100.00 | 2 | 2 | 84.60 | 871.28 |
Philippines | 2 | Asia | 88.89 | 75.00 | 2 | 2 | 52.00 | 76.82 |
Moldova | 2 | Europe | 81.25 | 37.50 | 2 | 2 | 73.10 | 575.86 |
Macedonia | 2 | Europe | - | - | - | - | 76.00 | 860.14 |
Finland | 2 | Europe | 57.64 | 75.00 | 2 | 1 | 89.60 | 72.01 |
Malta | 2 | Europe | - | - | - | - | 85.10 | 319.34 |
Malaysia | 2 | Asia | 82.99 | 75.00 | 3 | 2 | 66.60 | 11.22 |
Cuba | 2 | North America | 87.50 | 62.50 | 1 | 2 | 73.50 | 12.01 |
Mali | 2 | Africa | 69.44 | 50.00 | 1 | 2 | 45.60 | 7.90 |
Oman | 2 | Asia | 93.06 | 62.50 | 2 | 1 | 77.10 | 280.03 |
Saudi Arabia | 2 | Asia | 91.67 | 62.50 | 3 | 2 | 79.40 | 169.67 |
France | 2 | Europe | 82.99 | 100.00 | 3 | 2 | 87.90 | 809.23 |
Iraq | 2 | Asia | 90.28 | 50.00 | 2 | 1 | 60.10 | 305.95 |
Norway | 2 | Europe | 66.67 | 87.50 | 2 | 2 | 90.50 | 61.61 |
Senegal | 2 | Africa | 72.22 | 75.00 | 2 | 2 | 44.40 | 19.89 |
Turkey | 2 | Asia | 77.43 | 87.50 | 2 | 2 | 76.20 | 165.24 |
Trinidad and Tobago | 2 | North America | 84.03 | 75.00 | 1 | 2 | 62.10 | 85.75 |
Georgia | 2 | Asia | 93.06 | 37.50 | 2 | 2 | 62.10 | 326.63 |
Taiwan | 2 | Asia | 45.83 | 37.50 | 3 | 2 | 77.60 | 0.29 |
Ukraine | 2 | Europe | 86.81 | 37.50 | 2 | 2 | 72.70 | 296.38 |
Venezuela | 2 | South America | 82.64 | 50.00 | 3 | 0 | 64.70 | 31.69 |
D. R. of Congo | 2 | Africa | 74.65 | 50.00 | 1 | 1 | 40.40 | 3.74 |
Czech Republic | 2 | Europe | 81.94 | 100.00 | 2 | 2 | 84.80 | 785.04 |
Indonesia | 2 | Asia | 75.35 | 37.50 | 1 | 1 | 49.20 | 62.45 |
Sweden | 2 | Europe | 58.33 | 62.50 | 2 | 1 | 90.50 | 673.12 |
South Africa | 2 | Africa | 86.11 | 75.00 | 3 | 2 | 52.00 | 364.94 |
Cameroon | 3 | Africa | 69.44 | 37.50 | 2 | 1 | 44.40 | 16.61 |
Ethiopia | 3 | Africa | 73.61 | 50.00 | 1 | 1 | 44.20 | 14.87 |
Latvia | 3 | Europe | 60.07 | 100.00 | 1 | 2 | 77.70 | 111.34 |
Montenegro | 3 | Europe | - | - | - | - | 80.70 | 802.47 |
Pakistan | 3 | Asia | 81.94 | 75.00 | 2 | 1 | 43.10 | 36.97 |
Panama | 3 | North America | 87.50 | 75.00 | 2 | 1 | 64.40 | 718.00 |
Tunisia | 3 | Africa | 76.39 | 75.00 | 1 | 1 | 70.10 | 275.84 |
Uzbekistan | 3 | Asia | 88.54 | 50.00 | 1 | 2 | 62.30 | 18.26 |
Kosovo | 3 | Europe | 76.39 | 100.00 | 1 | 1 | - | 530.84 |
[1] |
Erick Limas. An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates. Journal of Dynamics and Games, 2019, 6 (2) : 131-148. doi: 10.3934/jdg.2019010 |
[2] |
Jorge Rebaza. On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29 (2) : 2129-2140. doi: 10.3934/era.2020108 |
[3] |
Qi Luo, Ryan Weightman, Sean T. McQuade, Mateo Díaz, Emmanuel Trélat, William Barbour, Dan Work, Samitha Samaranayake, Benedetto Piccoli. Optimization of vaccination for COVID-19 in the midst of a pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : 443-466. doi: 10.3934/nhm.2022016 |
[4] |
Nicola Bellomo, Diletta Burini, Nisrine Outada. Multiscale models of Covid-19 with mutations and variants. Networks and Heterogeneous Media, 2022, 17 (3) : 293-310. doi: 10.3934/nhm.2022008 |
[5] |
Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021093 |
[6] |
Haitao Song, Fang Liu, Feng Li, Xiaochun Cao, Hao Wang, Zhongwei Jia, Huaiping Zhu, Michael Y. Li, Wei Lin, Hong Yang, Jianghong Hu, Zhen Jin. Modeling the second outbreak of COVID-19 with isolation and contact tracing. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021294 |
[7] |
Gabriel Illanes, Ernesto Mordecki, Andrés Sosa. On the impact of the Covid-19 health crisis on GDP forecasting: An empirical approach. Journal of Dynamics and Games, 2022 doi: 10.3934/jdg.2022008 |
[8] |
Monique Chyba, Rinaldo M. Colombo, Mauro Garavello, Benedetto Piccoli. Advanced mathematical methodologies to contrast COVID-19 pandemic. Networks and Heterogeneous Media, 2022, 17 (3) : i-ii. doi: 10.3934/nhm.2022020 |
[9] |
Tailei Zhang, Zhimin Li. Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021088 |
[10] |
Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154 |
[11] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[12] |
Yanfei Zhao, Yepeng Xing. A delayed dynamical model for COVID-19 therapy with defective interfering particles and artificial antibodies. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021278 |
[13] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics and Games, 2021, 8 (3) : 167-186. doi: 10.3934/jdg.2021004 |
[14] |
Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186 |
[15] |
Lluís Alsedà, David Juher, Deborah M. King, Francesc Mañosas. Maximizing entropy of cycles on trees. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3237-3276. doi: 10.3934/dcds.2013.33.3237 |
[16] |
Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1 |
[17] |
Amin Reza Kalantari Khalil Abad, Farnaz Barzinpour, Seyed Hamid Reza Pasandideh. A novel separate chance-constrained programming model to design a sustainable medical ventilator supply chain network during the Covid-19 pandemic. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021234 |
[18] |
Xia Li, Chuntian Wang, Hao Li, Andrea L. Bertozzi. A martingale formulation for stochastic compartmental susceptible-infected-recovered (SIR) models to analyze finite size effects in COVID-19 case studies. Networks and Heterogeneous Media, 2022, 17 (3) : 311-331. doi: 10.3934/nhm.2022009 |
[19] |
Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 623-641. doi: 10.3934/dcds.2021131 |
[20] |
Monica Pragliola, Daniela Calvetti, Erkki Somersalo. Overcomplete representation in a hierarchical Bayesian framework. Inverse Problems and Imaging, 2022, 16 (1) : 19-38. doi: 10.3934/ipi.2021039 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]