
-
Previous Article
A note on the Nash equilibria of some multi-player reachability/safety games
- JDG Home
- This Issue
-
Next Article
Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution
Crisis risk prediction with concavity from Polymodel
1. | State University of New York at Stony Brook, Stony Brook, NY, USA |
2. | Sorbonne Economics Center, University Paris 1-Sorbonne, CNRS, France |
Financial crises are an important research topic because of their impact on the economy, businesses, and populations. However, prior research tends to generate reactive systemic risk measures, in the sense that the measure surges after the crisis starts. Few of them succeed in warning of financial crises in advance. In this paper, we first sketch a toy model that produces normal mixture distributions based on a dynamic regime switching model. We derive that the relative concavity among various indices tends to increase before a crisis. Using Polymodel theory, we introduce a measure of concavity as a crisis risk indicator, and test it against known crises observed in the past. We validate this indicator by a trading strategy holding long or short positions on the S & P 500 Index, depending on the indicator value.
References:
[1] |
B. K. Adhikari and J. E. Hilliard,
The VIX, VXO and realised volatility: A test of lagged and contemporaneous relationships, Internat. J. Financial Markets Derivatives, 3 (2014), 222-240.
doi: 10.1504/IJFMD.2014.059637. |
[2] |
A. Ang and J. Chen,
Asymmetric correlations of equity portfolios, J. Finance Econ., 63 (2002), 443-494.
doi: 10.1016/S0304-405X(02)00068-5. |
[3] |
A. Ang and A. Timmermann,
Regime changes and financial markets, Ann. Rev. Finance Econ., 4 (2011), 313-337.
doi: 10.3386/w17182. |
[4] |
C. Aschwanden, Not even scientists can easily explain p-values, FiveThirtyEight, (2015). Available from: https://web.archive.org/web/20190925221600/https://fivethirtyeight.com/features/not-even-scientists-can-easily-explain-p-values/. |
[5] |
L. E. Baum and T. Petrie,
Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Statist., 37 (1966), 1554-1563.
doi: 10.1214/aoms/1177699147. |
[6] |
C. Brownlees and R. F. Engle,
SRISK: A conditional capital shortfall measure of systemic risk, Rev. Financial Stud., 30 (2017), 48-79.
doi: 10.1093/rfs/hhw060. |
[7] |
A. S. Cherny, R. Douady and S. A. Molchanov, On measuring hedge fund risk, SSRN Electric J., (2008).
doi: 10.2139/ssrn.1113620. |
[8] |
R. Cumby, S. Figlewski and J. Hasbrouck,
Forecasting volatility and correlations with EGARCH models, J. Derivatives, 1 (1993), 51-63.
doi: 10.3905/jod.1993.407877. |
[9] |
A. Gil, J. Segura and N. M. Temme, Numerical Methods for Special Functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.
doi: 10.1137/1.9780898717822. |
[10] |
E. Helleiner,
Understanding the 2007–2008 global financial crisis: Lessons for scholars of international political economy, Ann. Rev. Polit. Sci., 14 (2011), 67-87.
doi: 10.1146/annurev-polisci-050409-112539. |
[11] |
F. Longin and B. Solnik,
Extreme correlation of international equity markets, J. Finance, 56 (2002), 649-676.
doi: 10.1111/0022-1082.00340. |
[12] |
D. K. Patro, M. Qi and X. Sun,
A simple indicator of systemic risk, J. Financial Stabil., 9 (2013), 105-116.
doi: 10.2139/ssrn.1569805. |
[13] |
D. Sornette and J. V. Andersen,
A nonlinear super-exponential rational model of speculative financial bubbles, Internat. J. Modern Phys. C, 13 (2002), 171-187.
doi: 10.1142/S0129183102003085. |
[14] |
R. Tibshirani,
Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B., 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x. |
[15] |
X. Ye and R. Douady, Systemic risk indicators based on nonlinear PolyModel, J. Risk Financial Manag., 12 (2018).
doi: 10.3390/jrfm12010002. |
[16] |
H. Zou and T. Hastie,
Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol., 67 (2005), 301-320.
doi: 10.1111/j.1467-9868.2005.00503.x. |
show all references
References:
[1] |
B. K. Adhikari and J. E. Hilliard,
The VIX, VXO and realised volatility: A test of lagged and contemporaneous relationships, Internat. J. Financial Markets Derivatives, 3 (2014), 222-240.
doi: 10.1504/IJFMD.2014.059637. |
[2] |
A. Ang and J. Chen,
Asymmetric correlations of equity portfolios, J. Finance Econ., 63 (2002), 443-494.
doi: 10.1016/S0304-405X(02)00068-5. |
[3] |
A. Ang and A. Timmermann,
Regime changes and financial markets, Ann. Rev. Finance Econ., 4 (2011), 313-337.
doi: 10.3386/w17182. |
[4] |
C. Aschwanden, Not even scientists can easily explain p-values, FiveThirtyEight, (2015). Available from: https://web.archive.org/web/20190925221600/https://fivethirtyeight.com/features/not-even-scientists-can-easily-explain-p-values/. |
[5] |
L. E. Baum and T. Petrie,
Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Statist., 37 (1966), 1554-1563.
doi: 10.1214/aoms/1177699147. |
[6] |
C. Brownlees and R. F. Engle,
SRISK: A conditional capital shortfall measure of systemic risk, Rev. Financial Stud., 30 (2017), 48-79.
doi: 10.1093/rfs/hhw060. |
[7] |
A. S. Cherny, R. Douady and S. A. Molchanov, On measuring hedge fund risk, SSRN Electric J., (2008).
doi: 10.2139/ssrn.1113620. |
[8] |
R. Cumby, S. Figlewski and J. Hasbrouck,
Forecasting volatility and correlations with EGARCH models, J. Derivatives, 1 (1993), 51-63.
doi: 10.3905/jod.1993.407877. |
[9] |
A. Gil, J. Segura and N. M. Temme, Numerical Methods for Special Functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007.
doi: 10.1137/1.9780898717822. |
[10] |
E. Helleiner,
Understanding the 2007–2008 global financial crisis: Lessons for scholars of international political economy, Ann. Rev. Polit. Sci., 14 (2011), 67-87.
doi: 10.1146/annurev-polisci-050409-112539. |
[11] |
F. Longin and B. Solnik,
Extreme correlation of international equity markets, J. Finance, 56 (2002), 649-676.
doi: 10.1111/0022-1082.00340. |
[12] |
D. K. Patro, M. Qi and X. Sun,
A simple indicator of systemic risk, J. Financial Stabil., 9 (2013), 105-116.
doi: 10.2139/ssrn.1569805. |
[13] |
D. Sornette and J. V. Andersen,
A nonlinear super-exponential rational model of speculative financial bubbles, Internat. J. Modern Phys. C, 13 (2002), 171-187.
doi: 10.1142/S0129183102003085. |
[14] |
R. Tibshirani,
Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B., 58 (1996), 267-288.
doi: 10.1111/j.2517-6161.1996.tb02080.x. |
[15] |
X. Ye and R. Douady, Systemic risk indicators based on nonlinear PolyModel, J. Risk Financial Manag., 12 (2018).
doi: 10.3390/jrfm12010002. |
[16] |
H. Zou and T. Hastie,
Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol., 67 (2005), 301-320.
doi: 10.1111/j.1467-9868.2005.00503.x. |










Category | Ticker | Description |
Equity | SHCOMP Index | SSE Composite Index |
Equity | STI Index | Singapore Stock Market Index |
Equity | DAX Index | 30 Major German Stocks Index |
Currency | DXY Index | US Dollar Index |
Currency | USDCNY Curncy | USD to Chinese Yuan Exchange |
Currency | USDJPY Curncy | USD to Japanese Yen Exchange |
Bound & Yield | IRX | US 13 Week Treasury Bill Yield |
Bound & Yield | USGG3M Index | US Government 3-Month Bond Yield |
Bound & Yield | USGG5YR Index | US Government 5-year Bond Yield |
Commodity | BCOMCN Index | Corn |
Commodity | BCOMAG Index | Agriculture |
Commodity | BCOMNG Index | Natural Gas |
Volatility | VXO Index | CBOE S & P 100 Volatility Index |
Note: Those factors are referred to in Ye and Douady [15]. |
Category | Ticker | Description |
Equity | SHCOMP Index | SSE Composite Index |
Equity | STI Index | Singapore Stock Market Index |
Equity | DAX Index | 30 Major German Stocks Index |
Currency | DXY Index | US Dollar Index |
Currency | USDCNY Curncy | USD to Chinese Yuan Exchange |
Currency | USDJPY Curncy | USD to Japanese Yen Exchange |
Bound & Yield | IRX | US 13 Week Treasury Bill Yield |
Bound & Yield | USGG3M Index | US Government 3-Month Bond Yield |
Bound & Yield | USGG5YR Index | US Government 5-year Bond Yield |
Commodity | BCOMCN Index | Corn |
Commodity | BCOMAG Index | Agriculture |
Commodity | BCOMNG Index | Natural Gas |
Volatility | VXO Index | CBOE S & P 100 Volatility Index |
Note: Those factors are referred to in Ye and Douady [15]. |
Price peak month | Price bottom month | Drawdown from peak to trough |
June, 1998 | August, 1998 | 15.57% |
August, 2000 | September, 2002 | 46.28% |
October, 2007 | February, 2009 | 52.56% |
May, 2015 | September, 2015 | 8.89% |
September, 2018 | December, 2018 | 13.97% |
December, 2019 | March, 2020 | 20% |
Price peak month | Price bottom month | Drawdown from peak to trough |
June, 1998 | August, 1998 | 15.57% |
August, 2000 | September, 2002 | 46.28% |
October, 2007 | February, 2009 | 52.56% |
May, 2015 | September, 2015 | 8.89% |
September, 2018 | December, 2018 | 13.97% |
December, 2019 | March, 2020 | 20% |
Annual | log-r (%) | std | Sharpe | r (%) | MDD (%) | Calmar |
S & P 500 | 7.06 | 0.154 | 0.457 | 7.08 | 52.6 | 0.135 |
Concavity | 10.57 | 0.146 | 0.725 | 10.62 | 24.0 | 0.443 |
Annual | log-r (%) | std | Sharpe | r (%) | MDD (%) | Calmar |
S & P 500 | 7.06 | 0.154 | 0.457 | 7.08 | 52.6 | 0.135 |
Concavity | 10.57 | 0.146 | 0.725 | 10.62 | 24.0 | 0.443 |
[1] |
Xiaoyu Xing, Caixia Geng. Optimal investment-reinsurance strategy in the correlated insurance and financial markets. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021120 |
[2] |
Stefan Weber, Kerstin Weske. The joint impact of bankruptcy costs, fire sales and cross-holdings on systemic risk in financial networks. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 9-. doi: 10.1186/s41546-017-0020-9 |
[3] |
Shou Chen, Chen Xiao. Financial risk contagion and optimal control. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022070 |
[4] |
Fengjun Wang, Qingling Zhang, Bin Li, Wanquan Liu. Optimal investment strategy on advertisement in duopoly. Journal of Industrial and Management Optimization, 2016, 12 (2) : 625-636. doi: 10.3934/jimo.2016.12.625 |
[5] |
Jingzhen Liu, Lihua Bai, Ka-Fai Cedric Yiu. Optimal investment with a value-at-risk constraint. Journal of Industrial and Management Optimization, 2012, 8 (3) : 531-547. doi: 10.3934/jimo.2012.8.531 |
[6] |
Jan Lorenz, Stefano Battiston. Systemic risk in a network fragility model analyzed with probability density evolution of persistent random walks. Networks and Heterogeneous Media, 2008, 3 (2) : 185-200. doi: 10.3934/nhm.2008.3.185 |
[7] |
Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial and Management Optimization, 2020, 16 (1) : 207-230. doi: 10.3934/jimo.2018147 |
[8] |
Lv Chen, Hailiang Yang. Optimal reinsurance and investment strategy with two piece utility function. Journal of Industrial and Management Optimization, 2017, 13 (2) : 737-755. doi: 10.3934/jimo.2016044 |
[9] |
Xiujing Dang, Yang Xu, Gongbing Bi, Lei Qin. Pricing strategy and product quality design with platform-investment. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2021224 |
[10] |
Sheng Li, Wei Yuan, Peimin Chen. Optimal control on investment and reinsurance strategies with delay and common shock dependence in a jump-diffusion financial market. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022068 |
[11] |
Chao Deng, Haixiang Yao, Yan Chen. Optimal investment and risk control problems with delay for an insurer in defaultable market. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2563-2579. doi: 10.3934/jimo.2019070 |
[12] |
Yong Ma, Shiping Shan, Weidong Xu. Optimal investment and consumption in the market with jump risk and capital gains tax. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1937-1953. doi: 10.3934/jimo.2018130 |
[13] |
Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315 |
[14] |
Yin Li, Xuerong Mao, Yazhi Song, Jian Tao. Optimal investment and proportional reinsurance strategy under the mean-reverting Ornstein-Uhlenbeck process and net profit condition. Journal of Industrial and Management Optimization, 2022, 18 (1) : 75-93. doi: 10.3934/jimo.2020143 |
[15] |
Shan Liu, Hui Zhao, Ximin Rong. Time-consistent investment-reinsurance strategy with a defaultable security under ambiguous environment. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1185-1222. doi: 10.3934/jimo.2021015 |
[16] |
Wei Chen, Jianchang Fan, Hongyan Du, Pingsi Zhong. Investment strategy for renewable energy and electricity service quality under different power structures. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022006 |
[17] |
Ming Yan, Hongtao Yang, Lei Zhang, Shuhua Zhang. Optimal investment-reinsurance policy with regime switching and value-at-risk constraint. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2195-2211. doi: 10.3934/jimo.2019050 |
[18] |
Vladimir Korotkov, Vladimir Emelichev, Yury Nikulin. Multicriteria investment problem with Savage's risk criteria: Theoretical aspects of stability and case study. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1297-1310. doi: 10.3934/jimo.2019003 |
[19] |
Xuanhua Peng, Wen Su, Zhimin Zhang. On a perturbed compound Poisson risk model under a periodic threshold-type dividend strategy. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1967-1986. doi: 10.3934/jimo.2019038 |
[20] |
Kai Kang, Taotao Lu, Jing Zhang. Financing strategy selection and coordination considering risk aversion in a capital-constrained supply chain. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1737-1768. doi: 10.3934/jimo.2021042 |
Impact Factor:
Tools
Article outline
Figures and Tables
[Back to Top]