April  2022, 9(2): 219-228. doi: 10.3934/jdg.2022005

Exploring the gender gap in a closed market niche. Explicit solutions of an ODE model

Facultad de Economía, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP 78213, México

* Corresponding author

Received  January 2022 Revised  January 2022 Published  April 2022 Early access  February 2022

We study the effects of bias on the gender gap by building a non-linear system of differential equations that model the evolution of the sex distribution in a closed market as a function of disaggregated bias and solve the equations explicitly. Thus, allowing us to make specific claims about the system's behavior that may shed some light on the development of policy geared towards a more equitable workplace.

Citation: David Sifuentes, Iván Téllez, Jorge Zazueta. Exploring the gender gap in a closed market niche. Explicit solutions of an ODE model. Journal of Dynamics and Games, 2022, 9 (2) : 219-228. doi: 10.3934/jdg.2022005
References:
[1]

E. Accinelli and J. Zazueta, Exploring the gender gap in the labor market: A sex-disaggregated view, The Social Science Journal, (2021).

[2]

M. Baussola and C. Mussida, Regional and gender differentials in the persistence of unemployment in Europe, International Review of Applied Economics, 31 (2017), 173-190.  doi: 10.1080/02692171.2016.1231801.

[3]

M. BaussolaC. MussidaJ. Jenkings and M. Penfold, Determinants of the gender unemployment gap in Italy and the United Kingdom: A comparative investigation, International Labor Review, 154 (2015), 537-562.  doi: 10.1111/j.1564-913X.2015.00028.x.

[4]

S. M.Clifton, K. Hill, A. J. Karamchandani, E. A. Auty, P. McMahon and G. Sun, Mathematical model of gender bias and homophily in professional hierarchies, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 023135, 13 pp. doi: 10.1063/1.5066450.

[5]

L. Hipp, Do hiring practices penalize women and benefit men for having children? Experimental evidence from Germany, European Sociological Review, 36 (2020), 250-264.  doi: 10.1093/esr/jcz056.

[6]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems & An Introduction to Chaos, 2$^{nd}$ edition, Elsevier, USA, 2004.

[7]

I. Holman, D. Stuart-Fox and C. E. Houser, The gender gap in science: How long until women are equally represented?, PLOS Biology, 16 (2018). doi: 10.1371/journal.pbio.2004956.

[8]

B. Petrongolo, The gender gap in employment and wages, Nature Human Behaviour, 3 (2019), 316-318.  doi: 10.1038/s41562-019-0558-x.

[9]

A. K. Shaw and D. E. Stanton, Leaks in the pipeline: Separating demographic inertia from ongoing gender differences in academia, Proceedings of the Royal Society B: Biological Sciences, 279 (2012), 3736-3741.  doi: 10.1098/rspb.2012.0822.

[10]

G. F. Simmons, Differential Equations with Applications and Historical Notes, 3rd edition, CRC Press, Taylor & Francis Group, USA, 2017.

[11]

M. Spivak, Calculus on Manifolds, Addison-Wesley, USA, 1965. doi: 10.1201/9780429501906.

[12]

I. Zanin, On Okun's lawin OECD countries: An analysis by age cohorts, Economic Letters, 125 (2014), StaringPage–EndingPage.

[13]

I. Zanin and R. Calabrese, Interaction effects in region-level gdp per capita and age on labour market transition rates in Italy, IZA Journal of Labor Economics, 6 (2017), 243-248.  doi: 10.1016/j.econlet.2014.08.030.

[14]

Global Gender Gap Report 2020, World Economic Forum, 2020. Available from: https://www.weforum.org/reports/gender-gap-2020-report-100-years-pay-equality.

[15]

Global Gender Gap Report 2021, World Economic Forum, 2021. Available from: https://www.weforum.org/reports/ab6795a1-960c-42b2-b3d5-587eccda6023.

show all references

References:
[1]

E. Accinelli and J. Zazueta, Exploring the gender gap in the labor market: A sex-disaggregated view, The Social Science Journal, (2021).

[2]

M. Baussola and C. Mussida, Regional and gender differentials in the persistence of unemployment in Europe, International Review of Applied Economics, 31 (2017), 173-190.  doi: 10.1080/02692171.2016.1231801.

[3]

M. BaussolaC. MussidaJ. Jenkings and M. Penfold, Determinants of the gender unemployment gap in Italy and the United Kingdom: A comparative investigation, International Labor Review, 154 (2015), 537-562.  doi: 10.1111/j.1564-913X.2015.00028.x.

[4]

S. M.Clifton, K. Hill, A. J. Karamchandani, E. A. Auty, P. McMahon and G. Sun, Mathematical model of gender bias and homophily in professional hierarchies, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 023135, 13 pp. doi: 10.1063/1.5066450.

[5]

L. Hipp, Do hiring practices penalize women and benefit men for having children? Experimental evidence from Germany, European Sociological Review, 36 (2020), 250-264.  doi: 10.1093/esr/jcz056.

[6]

M. W. Hirsch, S. Smale and R. L. Devaney, Differential Equations, Dynamical Systems & An Introduction to Chaos, 2$^{nd}$ edition, Elsevier, USA, 2004.

[7]

I. Holman, D. Stuart-Fox and C. E. Houser, The gender gap in science: How long until women are equally represented?, PLOS Biology, 16 (2018). doi: 10.1371/journal.pbio.2004956.

[8]

B. Petrongolo, The gender gap in employment and wages, Nature Human Behaviour, 3 (2019), 316-318.  doi: 10.1038/s41562-019-0558-x.

[9]

A. K. Shaw and D. E. Stanton, Leaks in the pipeline: Separating demographic inertia from ongoing gender differences in academia, Proceedings of the Royal Society B: Biological Sciences, 279 (2012), 3736-3741.  doi: 10.1098/rspb.2012.0822.

[10]

G. F. Simmons, Differential Equations with Applications and Historical Notes, 3rd edition, CRC Press, Taylor & Francis Group, USA, 2017.

[11]

M. Spivak, Calculus on Manifolds, Addison-Wesley, USA, 1965. doi: 10.1201/9780429501906.

[12]

I. Zanin, On Okun's lawin OECD countries: An analysis by age cohorts, Economic Letters, 125 (2014), StaringPage–EndingPage.

[13]

I. Zanin and R. Calabrese, Interaction effects in region-level gdp per capita and age on labour market transition rates in Italy, IZA Journal of Labor Economics, 6 (2017), 243-248.  doi: 10.1016/j.econlet.2014.08.030.

[14]

Global Gender Gap Report 2020, World Economic Forum, 2020. Available from: https://www.weforum.org/reports/gender-gap-2020-report-100-years-pay-equality.

[15]

Global Gender Gap Report 2021, World Economic Forum, 2021. Available from: https://www.weforum.org/reports/ab6795a1-960c-42b2-b3d5-587eccda6023.

Figure 1.  Regions $ R_1 $ and $ R_2 $. We used $ \alpha = 0.6 $, $ \beta = 0.1 $ and $ k = 100 $. In this case $ (f_0^{*},m_0^{*}) = (10.94, 39.06) $. We plotted the solution curve passing through $ (f_0^{*},m_0^{*}) $ only in the region $ R $. All solution curves starting in $ R_1 $ satisfy $ m_{\infty} > f_{\infty} $ and all solution curves starting in $ R_2 $ satisfy $ m_{\infty} < f_{\infty} $
[1]

Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069

[2]

Jane M. Heffernan, Yijun Lou, Marc Steben, Jianhong Wu. Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 447-466. doi: 10.3934/dcdsb.2014.19.447

[3]

Eunha Shim, Beth Kochin, Alison Galvani. Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences & Engineering, 2009, 6 (4) : 839-854. doi: 10.3934/mbe.2009.6.839

[4]

Raimund BÜrger, Gerardo Chowell, Elvis GavilÁn, Pep Mulet, Luis M. Villada. Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents. Mathematical Biosciences & Engineering, 2018, 15 (1) : 95-123. doi: 10.3934/mbe.2018004

[5]

Mihaela Negreanu, J. Ignacio Tello. On a Parabolic-ODE system of chemotaxis. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 279-292. doi: 10.3934/dcdss.2020016

[6]

José Luis Bravo, Manuel Fernández, Antonio Tineo. Periodic solutions of a periodic scalar piecewise ode. Communications on Pure and Applied Analysis, 2007, 6 (1) : 213-228. doi: 10.3934/cpaa.2007.6.213

[7]

Zhilan Feng, Robert Swihart, Yingfei Yi, Huaiping Zhu. Coexistence in a metapopulation model with explicit local dynamics. Mathematical Biosciences & Engineering, 2004, 1 (1) : 131-145. doi: 10.3934/mbe.2004.1.131

[8]

Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329

[9]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[10]

Francesco Paparella, Alessandro Portaluri. Geometry of stationary solutions for a system of vortex filaments: A dynamical approach. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3011-3042. doi: 10.3934/dcds.2013.33.3011

[11]

Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313

[12]

Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029

[13]

Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control and Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003

[14]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[15]

Takanobu Okazaki. Large time behaviour of solutions of nonlinear ode describing hysteresis. Conference Publications, 2007, 2007 (Special) : 804-813. doi: 10.3934/proc.2007.2007.804

[16]

Robert L. Peach, Alexis Arnaudon, Mauricio Barahona. Semi-supervised classification on graphs using explicit diffusion dynamics. Foundations of Data Science, 2020, 2 (1) : 19-33. doi: 10.3934/fods.2020002

[17]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[18]

Mostafa Fazly, Mahmoud Hesaaraki. Periodic solutions for a semi-ratio-dependent predator-prey dynamical system with a class of functional responses on time scales. Discrete and Continuous Dynamical Systems - B, 2008, 9 (2) : 267-279. doi: 10.3934/dcdsb.2008.9.267

[19]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactions and peakons. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 419-432. doi: 10.3934/dcds.1997.3.419

[20]

Jibin Li, Yi Zhang. On the traveling wave solutions for a nonlinear diffusion-convection equation: Dynamical system approach. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1119-1138. doi: 10.3934/dcdsb.2010.14.1119

 Impact Factor: 

Metrics

  • PDF downloads (274)
  • HTML views (225)
  • Cited by (0)

Other articles
by authors

[Back to Top]