- Previous Article
- JGM Home
- This Issue
-
Next Article
Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras
Dirac cotangent bundle reduction
1. | Applied Mechanics and Aerospace Engineering, Waseda University, Okubo, Shinjuku, Tokyo 169-8555, Japan |
2. | Control and Dynamical Systems 107-81, California Institute of Technology, Pasadena, CA 91125, United States |
First of all, we establish a reduction theory starting with the Hamilton-Pontryagin variational principle, which enables one to formulate an implicit analogue of the Lagrange-Poincaré equations. To do this, we assume that a Lie group acts freely and properly on a configuration manifold, in which case there is an associated principal bundle and we choose a principal connection. Then, we develop a reduction theory for the canonical Dirac structure on the cotangent bundle to induce a gauged Dirac structure . Second, it is shown that by making use of the gauged Dirac structure, one obtains a reduction procedure for standard implicit Lagrangian systems, which is called Lagrange-Poincaré-Dirac reduction . This procedure naturally induces the horizontal and vertical implicit Lagrange-Poincaré equations , which are consistent with those derived from the reduced Hamilton-Pontryagin principle. Further, we develop the case in which a Hamiltonian is given (perhaps, but not necessarily, coming from a regular Lagrangian); namely, Hamilton-Poincaré-Dirac reduction for the horizontal and vertical Hamilton-Poincaré equations . We illustrate the reduction procedures by an example of a satellite with a rotor.
The present work is done in a way that is consistent with, and may be viewed as a specialization of the larger context of Dirac reduction, which allows for Dirac reduction by stages . This is explored in a paper in preparation by Cendra, Marsden, Ratiu and Yoshimura.
[1] |
Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399 |
[2] |
Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013 |
[3] |
Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39 |
[4] |
Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001 |
[5] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[6] |
Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261 |
[7] |
Maria J. Esteban, Eric Séré. An overview on linear and nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 381-397. doi: 10.3934/dcds.2002.8.381 |
[8] |
Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165 |
[9] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[10] |
Xu Zhang. On the concentration of semiclassical states for nonlinear Dirac equations. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5389-5413. doi: 10.3934/dcds.2018238 |
[11] |
Xiaoyan Lin, Xianhua Tang. Solutions of nonlinear periodic Dirac equations with periodic potentials. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2051-2061. doi: 10.3934/dcdss.2019132 |
[12] |
Yu Chen, Yanheng Ding, Tian Xu. Potential well and multiplicity of solutions for nonlinear Dirac equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 587-607. doi: 10.3934/cpaa.2020028 |
[13] |
Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223 |
[14] |
Hassan Najafi Alishah. Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures. Journal of Geometric Mechanics, 2020, 12 (2) : 149-164. doi: 10.3934/jgm.2020008 |
[15] |
Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67 |
[16] |
Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167 |
[17] |
Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063 |
[18] |
V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901 |
[19] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[20] |
Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473 |
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]