June  2010, 2(2): 119-158. doi: 10.3934/jgm.2010.2.119

Information-theoretic inequalities on unimodular Lie groups


Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States

Received  November 2009 Revised  January 2010 Published  June 2010

Classical inequalities used in information theory such as those of de Bruijn, Fisher, Cramér, Rao, and Kullback carry over in a natural way from Euclidean space to unimodular Lie groups. These are groups that possess an integration measure that is simultaneously invariant under left and right shifts. All commutative groups are unimodular. And even in noncommutative cases unimodular Lie groups share many of the useful features of Euclidean space. The rotation and Euclidean motion groups, which are perhaps the most relevant Lie groups to problems in geometric mechanics, are unimodular, as are the unitary groups that play important roles in quantum computing. The extension of core information theoretic inequalities defined in the setting of Euclidean space to this broad class of Lie groups is potentially relevant to a number of problems relating to information gathering in mobile robotics, satellite attitude control, tomographic image reconstruction, biomolecular structure determination, and quantum information theory. In this paper, several definitions are extended from the Euclidean setting to that of Lie groups (including entropy and the Fisher information matrix), and inequalities analogous to those in classical information theory are derived and stated in the form of fifteen small theorems. In all such inequalities, addition of random variables is replaced with the group product, and the appropriate generalization of convolution of probability densities is employed. An example from the field of robotics demonstrates how several of these results can be applied to quantify the amount of information gained by pooling different sensory inputs.
Citation: Gregory S. Chirikjian. Information-theoretic inequalities on unimodular Lie groups. Journal of Geometric Mechanics, 2010, 2 (2) : 119-158. doi: 10.3934/jgm.2010.2.119

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.


Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014


Nadya Markin, Eldho K. Thomas, Frédérique Oggier. On group violations of inequalities in five subgroups. Advances in Mathematics of Communications, 2016, 10 (4) : 871-893. doi: 10.3934/amc.2016047


Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977


Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, Thiên-Hiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495-505. doi: 10.3934/proc.2007.2007.495


Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004


Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237


Theodore Voronov. Book review: General theory of Lie groupoids and Lie algebroids, by Kirill C. H. Mackenzie. Journal of Geometric Mechanics, 2021, 13 (3) : 277-283. doi: 10.3934/jgm.2021026


David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353


Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421


Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089


Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016


Ben Muatjetjeja, Dimpho Millicent Mothibi, Chaudry Masood Khalique. Lie group classification a generalized coupled (2+1)-dimensional hyperbolic system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2803-2812. doi: 10.3934/dcdss.2020219


Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025


Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28 (1) : 157-163. doi: 10.3934/era.2020010


Xuefeng Shen, Khoa Tran, Melvin Leok. High-order symplectic Lie group methods on $ SO(n) $ using the polar decomposition. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022003


Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683


Leonid Faybusovich, Cunlu Zhou. Long-step path-following algorithm for quantum information theory: Some numerical aspects and applications. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 445-467. doi: 10.3934/naco.2021017


Christopher Goodrich, Carlos Lizama. Positivity, monotonicity, and convexity for convolution operators. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4961-4983. doi: 10.3934/dcds.2020207


Yongjian Liu, Zhenhai Liu, Dumitru Motreanu. Differential inclusion problems with convolution and discontinuous nonlinearities. Evolution Equations and Control Theory, 2020, 9 (4) : 1057-1071. doi: 10.3934/eect.2020056

2020 Impact Factor: 0.857


  • PDF downloads (128)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]