Citation: |
[1] |
Andrei A. Agrachev and Yuri L. Sachkov, An intrinsic approach to the control of rolling bodies, In "Proceedings of the 38th Conference on Decision & Control," Phoenix, Arizona USA, December 1999. |
[2] |
Yasumichi Aiyama and Tamio Arai, A quantitative stability measure for graspless manipulation, In "Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems 96, IROS 96," volume 2 (1996), 911-916. |
[3] |
Anthony M. Bloch, P. S. Krishnaprasad, Jerrold E. Marsden and Richard M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.doi: 10.1007/BF02199365. |
[4] |
Robert L. Bryant and Lucas Hsu, Rigidity of integral curves of rank 2 distributions, Invent. Math., 114 (1993), 435-461.doi: 10.1007/BF01232676. |
[5] |
Hernán Cendra and María Etchechoury, Rolling of a symmetric sphere on a horizontal plane without sliding or spinning, Rep. Math. Phys., 57 (2006), 367-374.doi: 10.1016/S0034-4877(06)80027-3. |
[6] |
Hernán Cendra and Sebastián J. Ferraro, A nonholonomic approach to isoparallel problems and some applications, Dyn. Syst., 21 (2006), 409-437.doi: 10.1080/14689360600734112. |
[7] |
Hernán Cendra, Ernesto A. Lacomba and Walter Reartes, The Lagrange-d'Alembert-Poincaré equations for the symmetric rolling sphere, In "Proceedings of the Sixth 'Dr. Antonio A. R. Monteiro' Congress of Mathematics (Spanish) (Bahía Blanca, 2001)," pages 19-32. Univ. Nac. Sur Dep. Mat. Inst. Mat., Bahía Blanca, (2001). |
[8] |
Hernán Cendra, Jerrold E. Marsden and Tudor S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems, In "Mathematics Unlimited--2001 and Beyond," pages 221-273. Springer, Berlin, (2001). |
[9] |
Tuhin Das and Ranjan Mukherjee, Exponential stabilization of the rolling sphere, Automatica J. IFAC, 40 (2004), 1877-1889.doi: 10.1016/j.automatica.2004.06.003. |
[10] |
Sebastián José Ferraro, "Reducción de Sistemas Lagrangianos Dependientes de un Parámetro y el Problema Isoholonómico," PhD thesis, Universidad Nacional del Sur, 2005. |
[11] |
Wesley H. Huang, Control strategies for fine positioning via tapping, In "Proceedings of the 5th Symposium on Assembly and Task Planning," Besançon, France, July 2003.doi: 10.1109/ISATP.2003.1217211. |
[12] |
Wesley H. Huang, Eric P. Krotkov and Matthew T. Mason, Impulsive manipulation, In "Proceedings of 1995 IEEE International Conference on Robotics and Automation," volume 1 (1995), 120-125. |
[13] |
Alberto Ibort, Manuel de León, Ernesto A. Lacomba, David Martín de Diego and Paulo Pitanga, Mechanical systems subjected to impulsive constraints, J. Phys. A, 30 (1997), 5835-5854.doi: 10.1088/0305-4470/30/16/024. |
[14] |
Wang Sang Koon and Jerrold E. Marsden, Poisson reduction for nonholonomic mechanical systems with symmetry, Rep. Math. Phys., 42 (1998), 101-134. Pacific Institute of Mathematical Sciences Workshop on Nonholonomic Constraints in Dynamics (Calgary, AB, 1997). |
[15] |
Zexiang Li and John Canny, Motion of two rigid bodies with rolling constraint, IEEE Transactions on Robotics and Automation, 6 (1990), 62-72.doi: 10.1109/70.88118. |
[16] |
Kevin M. Lynch and Matthew T. Mason, Controllability of pushing, In "Proceedings of the 1995 IEEE International Conference on Robotics and Automation," volume 1 (1995), 112-119. |
[17] |
Yuseke Maeda and Tamio Arai, A quantitative stability measure for graspless manipulation, In "Proceedings of the 2002 IEEE International Conference on Robotics and Automation," Washington DC, USA, May 2002. |
[18] |
Jerrold E. Marsden and Tudor S. Ratiu, "Introduction to Mechanics and Symmetry," volume 17 of "Texts in Applied Mathematics," Springer-Verlag, New York, 1994. |
[19] |
Richard Montgomery, Isoholonomic problems and some applications, Comm. Math. Phys., 128 (1990), 565-592.doi: 10.1007/BF02096874. |
[20] |
Giuseppe Oriolo, Marilena Vendittelli, Alessia Marigo and Antonio Bicchi, From nominal to robust planning: the plate-ball manipulation system, In "ICRA'03, IEEE International Conference on Robotics and Automation," volume 3 (2003), 3175-3180. |
[21] |
Alexander P. Veselov and Lidia V. Veselova, Integrable nonholonomic systems on Lie groups, Math. Notes, 44 (1988), 604-619.doi: 10.1007/BF01158420. |