 Previous Article
 JGM Home
 This Issue

Next Article
Lagrangian and Hamiltonian formalism in Field Theory: A simple model
Geometric Jacobian linearization and LQR theory
1.  Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada, Canada 
References:
[1] 
R. Abraham, J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis, and Applications,'' 2nd edition, Number 75 in Applied Mathematical Sciences, SpringerVerlag, 1988. 
[2] 
C. D. Aliprantis and K. C. Border, "Infinitedimensional Analysis,'' 2nd edition, SpringerVerlag, New YorkHeidelbergBerlin, 1999. 
[3] 
M. Athans and P. L. Falb, "Optimal Control. An Introduction to the Theory and its Applications,'' McGrawHill, New York, 1966. 
[4] 
R. M. Bianchini and G. Stefani, Controllability along a trajectory: A variational approach, SIAM Journal on Control and Optimization, 31 (1993), 900927. doi: 10.1137/0331039. 
[5] 
R. W. Brockett, "Finite Dimensional Linear Systems,'' John Wiley and Sons, New York, New York, 1970. 
[6] 
R. M. Hirschorn and A. D. Lewis, Geometric local controllability: Secondorder conditions, Preprint, June 2002, available online at http://www.mast.queensu.ca/ andrew/. 
[7] 
M. Ikeda, H. Maeda and S. Kodama, Stabilization of linear systems, Journal of the Society of Industrial and Applied Mathematics, Series A Control, 10 (1972), 716729. 
[8] 
R. E. Kalman, Contributions to the theory of optimal control, Boletín de la Sociedad Matemática Mexicana. Segunda Serie, 5 (1960), 102119. 
[9] 
E. B. Lee and L. Markus, "Foundations of Optimal Control Theory,'' John Wiley and Sons, New York, New York, 1967. 
[10] 
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "Matematicheskaya Teoriya Optimal' nykh Protsessov,'' Gosudarstvennoe izdatelstvo fizikomatematicheskoi literatury, Moscow, 1961. Reprint of translation: [11]. 
[11] 
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'' Classics of Soviet Mathematics. Gordon & Breach Science Publishers, New York, 1986. Reprint of 1962 translation from the Russian by K. N. Trirogoff. 
[12] 
E. D. Sontag, "Mathematical Control Theory: Deterministic Finite Dimensional Systems,'' 2nd edition, Number 6 in Texts in Applied Mathematics, SpringerVerlag, New YorkHeidelbergBerlin, 1998. 
[13] 
H. J. Sussmann, An introduction to the coordinatefree maximum principle, in "Geometry of Feedback and Optimal Control'' (eds. B. Jakubczyk and W. Respondek), Dekker Marcel Dekker, New York, (1997), 463557. 
[14] 
D. R. Tyner, "Geometric Jacobian Linearisation,'' PhD thesis, Queen's University, Kingston, Kingston, ON, Canada, 2007. 
[15] 
M. Vidyasagar, "Nonlinear Systems Analysis,'' 2nd edition, Number 42 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 2002. Reprint of 1993 Prentice Hall second edition. 
[16] 
K. Yano and S. Ishihara, "Tangent and Cotangent Bundles,'' Number 16 in Pure and Applied Mathematics. Dekker Marcel Dekker, New York, 1973. 
show all references
References:
[1] 
R. Abraham, J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis, and Applications,'' 2nd edition, Number 75 in Applied Mathematical Sciences, SpringerVerlag, 1988. 
[2] 
C. D. Aliprantis and K. C. Border, "Infinitedimensional Analysis,'' 2nd edition, SpringerVerlag, New YorkHeidelbergBerlin, 1999. 
[3] 
M. Athans and P. L. Falb, "Optimal Control. An Introduction to the Theory and its Applications,'' McGrawHill, New York, 1966. 
[4] 
R. M. Bianchini and G. Stefani, Controllability along a trajectory: A variational approach, SIAM Journal on Control and Optimization, 31 (1993), 900927. doi: 10.1137/0331039. 
[5] 
R. W. Brockett, "Finite Dimensional Linear Systems,'' John Wiley and Sons, New York, New York, 1970. 
[6] 
R. M. Hirschorn and A. D. Lewis, Geometric local controllability: Secondorder conditions, Preprint, June 2002, available online at http://www.mast.queensu.ca/ andrew/. 
[7] 
M. Ikeda, H. Maeda and S. Kodama, Stabilization of linear systems, Journal of the Society of Industrial and Applied Mathematics, Series A Control, 10 (1972), 716729. 
[8] 
R. E. Kalman, Contributions to the theory of optimal control, Boletín de la Sociedad Matemática Mexicana. Segunda Serie, 5 (1960), 102119. 
[9] 
E. B. Lee and L. Markus, "Foundations of Optimal Control Theory,'' John Wiley and Sons, New York, New York, 1967. 
[10] 
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "Matematicheskaya Teoriya Optimal' nykh Protsessov,'' Gosudarstvennoe izdatelstvo fizikomatematicheskoi literatury, Moscow, 1961. Reprint of translation: [11]. 
[11] 
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'' Classics of Soviet Mathematics. Gordon & Breach Science Publishers, New York, 1986. Reprint of 1962 translation from the Russian by K. N. Trirogoff. 
[12] 
E. D. Sontag, "Mathematical Control Theory: Deterministic Finite Dimensional Systems,'' 2nd edition, Number 6 in Texts in Applied Mathematics, SpringerVerlag, New YorkHeidelbergBerlin, 1998. 
[13] 
H. J. Sussmann, An introduction to the coordinatefree maximum principle, in "Geometry of Feedback and Optimal Control'' (eds. B. Jakubczyk and W. Respondek), Dekker Marcel Dekker, New York, (1997), 463557. 
[14] 
D. R. Tyner, "Geometric Jacobian Linearisation,'' PhD thesis, Queen's University, Kingston, Kingston, ON, Canada, 2007. 
[15] 
M. Vidyasagar, "Nonlinear Systems Analysis,'' 2nd edition, Number 42 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 2002. Reprint of 1993 Prentice Hall second edition. 
[16] 
K. Yano and S. Ishihara, "Tangent and Cotangent Bundles,'' Number 16 in Pure and Applied Mathematics. Dekker Marcel Dekker, New York, 1973. 
[1] 
Galina Kurina, Sahlar Meherrem. Decomposition of discrete linearquadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764774. doi: 10.3934/proc.2015.0764 
[2] 
Jiongmin Yong. A deterministic linear quadratic timeinconsistent optimal control problem. Mathematical Control and Related Fields, 2011, 1 (1) : 83118. doi: 10.3934/mcrf.2011.1.83 
[3] 
Ying Hu, Shanjian Tang. Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 1. doi: 10.1186/s415460180035x 
[4] 
Qi Lü, Tianxiao Wang, Xu Zhang. Characterization of optimal feedback for stochastic linear quadratic control problems. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 11. doi: 10.1186/s4154601700227 
[5] 
Mohamed Aliane, Mohand Bentobache, Nacima Moussouni, Philippe Marthon. Direct method to solve linearquadratic optimal control problems. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 645663. doi: 10.3934/naco.2021002 
[6] 
Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems  S, 2018, 11 (6) : 11031119. doi: 10.3934/dcdss.2018063 
[7] 
Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linearquadratic optimal control problem with secondorder linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495512. doi: 10.3934/naco.2020040 
[8] 
Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linearquadratic control problem with discretionary stopping. Discrete and Continuous Dynamical Systems  B, 2007, 8 (2) : 261277. doi: 10.3934/dcdsb.2007.8.261 
[9] 
Russell Johnson, Carmen Núñez. Remarks on linearquadratic dissipative control systems. Discrete and Continuous Dynamical Systems  B, 2015, 20 (3) : 889914. doi: 10.3934/dcdsb.2015.20.889 
[10] 
Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control and Related Fields, 2021, 11 (1) : 169188. doi: 10.3934/mcrf.2020032 
[11] 
Jianhui Huang, Xun Li, Jiongmin Yong. A linearquadratic optimal control problem for meanfield stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97139. doi: 10.3934/mcrf.2015.5.97 
[12] 
Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closedloop solvability of stochastic linearquadratic optimal control problems. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 27852805. doi: 10.3934/dcds.2019117 
[13] 
Georg Vossen, Stefan Volkwein. Model reduction techniques with aposteriori error analysis for linearquadratic optimal control problems. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 465485. doi: 10.3934/naco.2012.2.465 
[14] 
Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations and Control Theory, 2016, 5 (1) : 105134. doi: 10.3934/eect.2016.5.105 
[15] 
Jingrui Sun, Hanxiao Wang. Meanfield stochastic linearquadratic optimal control problems: Weak closedloop solvability. Mathematical Control and Related Fields, 2021, 11 (1) : 4771. doi: 10.3934/mcrf.2020026 
[16] 
Xun Li, Jingrui Sun, Jiongmin Yong. Meanfield stochastic linear quadratic optimal control problems: closedloop solvability. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 2. doi: 10.1186/s4154601600023 
[17] 
Huyên Pham. Linear quadratic optimal control of conditional McKeanVlasov equation with random coefficients and applications. Probability, Uncertainty and Quantitative Risk, 2016, 1 (0) : 7. doi: 10.1186/s415460160008x 
[18] 
Yadong Shu, Bo Li. Linearquadratic optimal control for discretetime stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 15831602. doi: 10.3934/jimo.2021034 
[19] 
Shuo Han, Ping Lin, Jiongmin Yong. Causal state feedback representation for linear quadratic optimal control problems of singular Volterra integral equations. Mathematical Control and Related Fields, 2022 doi: 10.3934/mcrf.2022038 
[20] 
Eduardo Cerpa. Null controllability and stabilization of the linear KuramotoSivashinsky equation. Communications on Pure and Applied Analysis, 2010, 9 (1) : 91102. doi: 10.3934/cpaa.2010.9.91 
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]