-
Previous Article
Book review: Marcelo Epstein, The Geometrical Language of Continuum Mechanics
- JGM Home
- This Issue
-
Next Article
A theoretical framework for backward error analysis on manifolds
On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories
1. | Departamento de Matemática Aplicada IV. Universitat Politècnica de Catalunya-BarcelonaTech., Edificio C-3, Campus Norte UPC, C/ Jordi Girona 1. 08034 Barcelona, Spain |
2. | Departamento de Xeometría e Topoloxía. Facultade de Matemáticas,, Universidade de Santiago de Compostela., 15706-Santiago de Compostela, Spain, Spain |
3. | Departamento de Matemáticas, Facultade de Ciencias, Universidad de A Coruña. 15071-A Coruña, Spain |
References:
[1] |
R. A. Abraham and J. E. Marsden, "Foundations of Mechanics,'' 2nd Edition, Benjamin-Cummings Publishing Company, New York, 1978. |
[2] |
A. Awane, $k$-symplectic structures, J. Math. Phys., 33 (1992), 4046-4052.
doi: 10.1063/1.529855. |
[3] |
A. Awane, $G$-spaces $k$-symplectic homogènes, J. Geom. Phys., 13 (1994), 139-157.
doi: 10.1016/0393-0440(94)90024-8. |
[4] |
A. Awane and M. Goze, "Pfaffian Systems, $k$-Symplectic Systems,'' Kluwer Acad. Pub., Dordrecht 2000. |
[5] |
J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories, Diff. Geom. Appl., 1 (1991), 345-374. |
[6] |
D. Chinea, M. de León and J. C. Marrero, Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems, Comment. Math. Univ. Carolin., 32 (1991), 383-387. |
[7] |
J. Dieudonné, "Foundations of Modern Analysis,'' 2nd ed., Academic Press, New York, 1969. |
[8] |
A. Echeverría-Enríquez, M. De León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories, J. Math. Phys., 48 (2007), 112901, 30 pp. |
[9] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector fields and connections. Setting Lagrangian equations for field theories, J. Math. Phys., 39 (1998), 4578-4603. |
[10] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries, J. Phys. A: Math. Gen., 32 (1999), 8461-8484. |
[11] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories, J. Math. Phys., 41 (2000), 7402-7444. |
[12] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory,'' World Scientific Pub. Co., Singapore, 1997. |
[13] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, Covariant Hamilton equations for field theory, J. Phys. A, 32 (1999), 6629-6642.
doi: 10.1088/0305-4470/32/38/302. |
[14] |
M. J. Gotay, J. Isenberg, J. E. Marsden and R. Montgomery, Momentum maps and classical relativistic fields I: Covariant Theory, arXiv:physics/9801019v2, (1999). |
[15] |
C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Differential Geom., 25 (1987), 23-53. |
[16] |
F. Hélein and J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl, Adv. Theor. Math. Phys., 8 (2004), 565-601. |
[17] |
I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys., 41 (1998), 49-90.
doi: 10.1016/S0034-4877(98)80182-1. |
[18] |
J. Kijowski, A finite-dimensional canonical formalism in the classical field theory, Comm. Math. Phys., 30 (1973), 99-128.
doi: 10.1007/BF01645975. |
[19] |
J. Kijowski and W. Szczyrba, Multisymplectic manifolds and the geometrical construction of the Poisson brackets in the classical field theory, Géométrie Symplectique et Physique Mathématique Coll. Int. C.N.R.S., 237 (1975), 347-378. |
[20] |
J. Kijowski and W. M. Tulczyjew, "A Symplectic Framework for Field Theories," Lect. Notes Phys., 170, Springer-Verlag, Berlin, 1979. |
[21] |
J. M. Lee, "Introduction to Smooth Manifolds,'' Springer, New York, 2003. |
[22] |
M. de León, J. Marín-Solano and J. C. Marrero, A geometrical approach to classical field theories: A constraint algorithm for singular theories, Proc. on New Developments in Differential geometry, L. Tamassi-J. Szenthe eds., Kluwer Acad. Press, (1996), 291-312. |
[23] |
M. de León, M. McLean, L. K. Norris, A. Rey-Roca and M. Salgado, Geometric structures in field theory, arXiv:math-ph/0208036v1 (2002). |
[24] |
M. de León, E. Merino, J. A. Oubiña, P. Rodrigues and M. Salgado, Hamiltonian systems on $k$-cosymplectic manifolds, J. Math. Phys., 39 (1998), 876-893. |
[25] |
M. de León, E. Merino and M. Salgado, $k$-cosymplectic manifolds and Lagrangian field theories, J. Math. Phys., 42 (2001), 2092-2104. |
[26] |
M. McLean and L. K. Norris, Covariant field theory on frame bundles of fibered manifolds, J. Math. Phys., 41 (2000), 6808-6823.
doi: 10.1063/1.1288797. |
[27] |
J. E. Marsden and S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves, Math. Proc. Camb. Phil. Soc., 125 (1999), 553-575.
doi: 10.1017/S0305004198002953. |
[28] |
F. Munteanu, A. M. Rey and M. Salgado, The Günther's formalism in classical field theory: Momentum map and reduction, J. Math. Phys., 45 (2004), 1730-1751.
doi: 10.1063/1.1688433. |
[29] |
M.C. Muñoz-Lecanda, M. Salgado and S. Vilariño, $k$-symplectic and $k$-cosymplectic Lagrangian field theories: Some interesting examples and applications, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 669-692.
doi: 10.1142/S0219887810004506. |
[30] |
L. K. Norris, Generalized symplectic geometry on the frame bundle of a manifold, Proc. Symp. Pure Math. 54, Part 2. Amer. Math. Soc., Providence RI, (1993), 435-465. |
[31] |
L. K. Norris, $n$-symplectic algebra of observables in covariant Lagrangian field theory, J. Math. Phys., 42 (2001), 4827-4845.
doi: 10.1063/1.1396835. |
[32] |
C. Paufler and H. Römer, Geometry of Hamiltonian $n$-vector fields in multisymplectic field theory, J. Geom. Phys., 44 (2002), 52-69. |
[33] |
A. M. Rey, N. Román-Roy and M. Salgado, Günther's formalism in classical field theory: Skinner-Rusk approach and the evolution operator, J. Math. Phys., 46 (2005), 052901.
doi: 10.1063/1.1876872. |
[34] |
N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories, Symmetry Integrability Geom. Methods Appl. (SIGMA), 5 (2009) 100, 25 pp. |
[35] |
N. Román-Roy, M. Salgado and S. Vilariño, On a kind of Noether symmetries and conservation laws in $k$-symplectic field theory, J. Math. Phys., 52 (2011), 022901; (20 pages). |
[36] |
G. Sardanashvily, "Generalized Hamiltonian Formalism for Field Theory. Constraint Systems,'' World Scientific, Singapore, 1995. |
[37] |
D. J. Saunders, "The Geometry of Jet Bundles,'' London Math. Soc. Lect. Notes Ser. 142, Cambridge, Univ. Press, 1989. |
show all references
References:
[1] |
R. A. Abraham and J. E. Marsden, "Foundations of Mechanics,'' 2nd Edition, Benjamin-Cummings Publishing Company, New York, 1978. |
[2] |
A. Awane, $k$-symplectic structures, J. Math. Phys., 33 (1992), 4046-4052.
doi: 10.1063/1.529855. |
[3] |
A. Awane, $G$-spaces $k$-symplectic homogènes, J. Geom. Phys., 13 (1994), 139-157.
doi: 10.1016/0393-0440(94)90024-8. |
[4] |
A. Awane and M. Goze, "Pfaffian Systems, $k$-Symplectic Systems,'' Kluwer Acad. Pub., Dordrecht 2000. |
[5] |
J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories, Diff. Geom. Appl., 1 (1991), 345-374. |
[6] |
D. Chinea, M. de León and J. C. Marrero, Locally conformal cosymplectic manifolds and time-dependent Hamiltonian systems, Comment. Math. Univ. Carolin., 32 (1991), 383-387. |
[7] |
J. Dieudonné, "Foundations of Modern Analysis,'' 2nd ed., Academic Press, New York, 1969. |
[8] |
A. Echeverría-Enríquez, M. De León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories, J. Math. Phys., 48 (2007), 112901, 30 pp. |
[9] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector fields and connections. Setting Lagrangian equations for field theories, J. Math. Phys., 39 (1998), 4578-4603. |
[10] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries, J. Phys. A: Math. Gen., 32 (1999), 8461-8484. |
[11] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories, J. Math. Phys., 41 (2000), 7402-7444. |
[12] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory,'' World Scientific Pub. Co., Singapore, 1997. |
[13] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, Covariant Hamilton equations for field theory, J. Phys. A, 32 (1999), 6629-6642.
doi: 10.1088/0305-4470/32/38/302. |
[14] |
M. J. Gotay, J. Isenberg, J. E. Marsden and R. Montgomery, Momentum maps and classical relativistic fields I: Covariant Theory, arXiv:physics/9801019v2, (1999). |
[15] |
C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Differential Geom., 25 (1987), 23-53. |
[16] |
F. Hélein and J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker versus De Donder-Weyl, Adv. Theor. Math. Phys., 8 (2004), 565-601. |
[17] |
I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space, Rep. Math. Phys., 41 (1998), 49-90.
doi: 10.1016/S0034-4877(98)80182-1. |
[18] |
J. Kijowski, A finite-dimensional canonical formalism in the classical field theory, Comm. Math. Phys., 30 (1973), 99-128.
doi: 10.1007/BF01645975. |
[19] |
J. Kijowski and W. Szczyrba, Multisymplectic manifolds and the geometrical construction of the Poisson brackets in the classical field theory, Géométrie Symplectique et Physique Mathématique Coll. Int. C.N.R.S., 237 (1975), 347-378. |
[20] |
J. Kijowski and W. M. Tulczyjew, "A Symplectic Framework for Field Theories," Lect. Notes Phys., 170, Springer-Verlag, Berlin, 1979. |
[21] |
J. M. Lee, "Introduction to Smooth Manifolds,'' Springer, New York, 2003. |
[22] |
M. de León, J. Marín-Solano and J. C. Marrero, A geometrical approach to classical field theories: A constraint algorithm for singular theories, Proc. on New Developments in Differential geometry, L. Tamassi-J. Szenthe eds., Kluwer Acad. Press, (1996), 291-312. |
[23] |
M. de León, M. McLean, L. K. Norris, A. Rey-Roca and M. Salgado, Geometric structures in field theory, arXiv:math-ph/0208036v1 (2002). |
[24] |
M. de León, E. Merino, J. A. Oubiña, P. Rodrigues and M. Salgado, Hamiltonian systems on $k$-cosymplectic manifolds, J. Math. Phys., 39 (1998), 876-893. |
[25] |
M. de León, E. Merino and M. Salgado, $k$-cosymplectic manifolds and Lagrangian field theories, J. Math. Phys., 42 (2001), 2092-2104. |
[26] |
M. McLean and L. K. Norris, Covariant field theory on frame bundles of fibered manifolds, J. Math. Phys., 41 (2000), 6808-6823.
doi: 10.1063/1.1288797. |
[27] |
J. E. Marsden and S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves, Math. Proc. Camb. Phil. Soc., 125 (1999), 553-575.
doi: 10.1017/S0305004198002953. |
[28] |
F. Munteanu, A. M. Rey and M. Salgado, The Günther's formalism in classical field theory: Momentum map and reduction, J. Math. Phys., 45 (2004), 1730-1751.
doi: 10.1063/1.1688433. |
[29] |
M.C. Muñoz-Lecanda, M. Salgado and S. Vilariño, $k$-symplectic and $k$-cosymplectic Lagrangian field theories: Some interesting examples and applications, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 669-692.
doi: 10.1142/S0219887810004506. |
[30] |
L. K. Norris, Generalized symplectic geometry on the frame bundle of a manifold, Proc. Symp. Pure Math. 54, Part 2. Amer. Math. Soc., Providence RI, (1993), 435-465. |
[31] |
L. K. Norris, $n$-symplectic algebra of observables in covariant Lagrangian field theory, J. Math. Phys., 42 (2001), 4827-4845.
doi: 10.1063/1.1396835. |
[32] |
C. Paufler and H. Römer, Geometry of Hamiltonian $n$-vector fields in multisymplectic field theory, J. Geom. Phys., 44 (2002), 52-69. |
[33] |
A. M. Rey, N. Román-Roy and M. Salgado, Günther's formalism in classical field theory: Skinner-Rusk approach and the evolution operator, J. Math. Phys., 46 (2005), 052901.
doi: 10.1063/1.1876872. |
[34] |
N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories, Symmetry Integrability Geom. Methods Appl. (SIGMA), 5 (2009) 100, 25 pp. |
[35] |
N. Román-Roy, M. Salgado and S. Vilariño, On a kind of Noether symmetries and conservation laws in $k$-symplectic field theory, J. Math. Phys., 52 (2011), 022901; (20 pages). |
[36] |
G. Sardanashvily, "Generalized Hamiltonian Formalism for Field Theory. Constraint Systems,'' World Scientific, Singapore, 1995. |
[37] |
D. J. Saunders, "The Geometry of Jet Bundles,'' London Math. Soc. Lect. Notes Ser. 142, Cambridge, Univ. Press, 1989. |
[1] |
Alberto Ibort, Amelia Spivak. Covariant Hamiltonian field theories on manifolds with boundary: Yang-Mills theories. Journal of Geometric Mechanics, 2017, 9 (1) : 47-82. doi: 10.3934/jgm.2017002 |
[2] |
Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 1-26. doi: 10.3934/jgm.2012.4.1 |
[3] |
Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Constraint algorithm for singular field theories in the k-cosymplectic framework. Journal of Geometric Mechanics, 2020, 12 (1) : 1-23. doi: 10.3934/jgm.2020002 |
[4] |
Xavier Gràcia, Xavier Rivas, Narciso Román-Roy. Erratum: Constraint algorithm for singular field theories in the $ k $-cosymplectic framework. Journal of Geometric Mechanics, 2021, 13 (2) : 273-275. doi: 10.3934/jgm.2021007 |
[5] |
Dmitry Jakobson, Alexander Strohmaier, Steve Zelditch. On the spectrum of geometric operators on Kähler manifolds. Journal of Modern Dynamics, 2008, 2 (4) : 701-718. doi: 10.3934/jmd.2008.2.701 |
[6] |
Martin Pinsonnault. Maximal compact tori in the Hamiltonian group of 4-dimensional symplectic manifolds. Journal of Modern Dynamics, 2008, 2 (3) : 431-455. doi: 10.3934/jmd.2008.2.431 |
[7] |
Carlos Kenig, Tobias Lamm, Daniel Pollack, Gigliola Staffilani, Tatiana Toro. The Cauchy problem for Schrödinger flows into Kähler manifolds. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 389-439. doi: 10.3934/dcds.2010.27.389 |
[8] |
Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397 |
[9] |
D.J. Georgiev, A. J. Roberts, D. V. Strunin. Nonlinear dynamics on centre manifolds describing turbulent floods: k-$\omega$ model. Conference Publications, 2007, 2007 (Special) : 419-428. doi: 10.3934/proc.2007.2007.419 |
[10] |
Jundong Zhou. A class of the non-degenerate complex quotient equations on compact Kähler manifolds. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2361-2377. doi: 10.3934/cpaa.2021085 |
[11] |
Andrew James Bruce, Janusz Grabowski. Symplectic $ {\mathbb Z}_2^n $-manifolds. Journal of Geometric Mechanics, 2021, 13 (3) : 285-311. doi: 10.3934/jgm.2021020 |
[12] |
L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395 |
[13] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2021, 13 (1) : 55-72. doi: 10.3934/jgm.2020031 |
[14] |
Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097 |
[15] |
Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete and Continuous Dynamical Systems, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321 |
[16] |
Pedro Daniel Prieto-Martínez, Narciso Román-Roy. A new multisymplectic unified formalism for second order classical field theories. Journal of Geometric Mechanics, 2015, 7 (2) : 203-253. doi: 10.3934/jgm.2015.7.203 |
[17] |
Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227 |
[18] |
Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799 |
[19] |
James C. Robinson. Computing inertial manifolds. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 815-833. doi: 10.3934/dcds.2002.8.815 |
[20] |
José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921 |
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]