 Previous Article
 JGM Home
 This Issue

Next Article
On the $k$symplectic, $k$cosymplectic and multisymplectic formalisms of classical field theories
Book review: Marcelo Epstein, The Geometrical Language of Continuum Mechanics
1.  Department of Mechanical Engineering, BenGurion University, P.O. Box 653, BeerSheva, 84848, Israel 
References:
show all references
References:
[1] 
Javier Fernández, Marcela Zuccalli. A geometric approach to discrete connections on principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 433444. doi: 10.3934/jgm.2013.5.433 
[2] 
Thorsten Hüls. Computing stable hierarchies of fiber bundles. Discrete and Continuous Dynamical Systems  B, 2017, 22 (9) : 33413367. doi: 10.3934/dcdsb.2017140 
[3] 
Mauro Patrão, Luiz A. B. San Martin. Morse decomposition of semiflows on fiber bundles. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 561587. doi: 10.3934/dcds.2007.17.561 
[4] 
Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199220. doi: 10.3934/jgm.2016004 
[5] 
V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 3744. 
[6] 
Guillermo DávilaRascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 10771088. doi: 10.3934/dcds.2013.33.1077 
[7] 
Marco Castrillón López, Pablo M. Chacón, Pedro L. García. LagrangePoincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399414. doi: 10.3934/jgm.2013.5.399 
[8] 
Marco Castrillón López, Pedro Luis García Pérez. The problem of Lagrange on principal bundles under a subgroup of symmetries. Journal of Geometric Mechanics, 2019, 11 (4) : 539552. doi: 10.3934/jgm.2019026 
[9] 
Paolo PodioGuidugli. On the modeling of transport phenomena in continuum and statistical mechanics. Discrete and Continuous Dynamical Systems  S, 2017, 10 (6) : 13931411. doi: 10.3934/dcdss.2017074 
[10] 
Piotr Gwiazda, Piotr Minakowski, Agnieszka ŚwierczewskaGwiazda. On the anisotropic Orlicz spaces applied in the problems of continuum mechanics. Discrete and Continuous Dynamical Systems  S, 2013, 6 (5) : 12911306. doi: 10.3934/dcdss.2013.6.1291 
[11] 
J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 81113. doi: 10.3934/dcds.2008.20.81 
[12] 
Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 4553. 
[13] 
Clara CufíCabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 46674704. doi: 10.3934/dcds.2021053 
[14] 
Brian Straughan. Shocks and acceleration waves in modern continuum mechanics and in social systems. Evolution Equations and Control Theory, 2014, 3 (3) : 541555. doi: 10.3934/eect.2014.3.541 
[15] 
Weinan E, Jianfeng Lu. Mathematical theory of solids: From quantum mechanics to continuum models. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 50855097. doi: 10.3934/dcds.2014.34.5085 
[16] 
François GayBalmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 3984. doi: 10.3934/jgm.2013.5.39 
[17] 
J. B. van den Berg, J. D. Mireles James. Parameterization of slowstable manifolds and their invariant vector bundles: Theory and numerical implementation. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 46374664. doi: 10.3934/dcds.2016002 
[18] 
Simone Fiori. Errorbased control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control and Related Fields, 2021, 11 (1) : 143167. doi: 10.3934/mcrf.2020031 
[19] 
Eckhard Meinrenken. Quotients of double vector bundles and multigraded bundles. Journal of Geometric Mechanics, 2022, 14 (2) : 307329. doi: 10.3934/jgm.2021027 
[20] 
JeanMarie Souriau. On Geometric Mechanics. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 595607. doi: 10.3934/dcds.2007.19.595 
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]