Advanced Search
Article Contents
Article Contents

Lyapunov constraints and global asymptotic stabilization

Abstract Related Papers Cited by
  • In this paper, we develop a method for stabilizing underactuated mechanical systems by imposing kinematic constraints (more precisely Lyapunov constraints). If these constraints can be implemented by actuators, i.e., if there exists a related constraint force exerted by the actuators, then the existence of a Lyapunov function for the system under consideration is guaranteed. We establish necessary and sufficient conditions for the existence and uniqueness of constraint forces. These conditions give rise to a system of PDEs whose solution is the required Lyapunov function. To illustrate our results, we solve these PDEs for certain underactuated mechanical systems of interest such as the inertia wheel-pendulum, the inverted pendulum on a cart system and the ball and beam system.
    Mathematics Subject Classification: Primary: 93D20; Secondary: 53Z05.


    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. E. Marsden, "Foundation of Mechanics," New York, Benjaming Cummings, 1985.


    V. I. Arnold, "Mathematical Models in Classical Mechanics," Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg, 1978.


    A. M. Bloch, "Nonholonomic Mechanics and Control," volume 24 of Interdisciplinary Applied Mathematics, Systems and Control, Springer-Verlag, New York, 2003.


    A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems II: Potential shaping, IEEE Trans. Automat. Control, 46 (2001), 1556-71.doi: 10.1109/9.956051.


    A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-70.doi: 10.1109/9.895562.


    W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry," 2nd edition, Pure and Applied Mathematics, 120, Academic Press, Orlando, FL, 1986.


    F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems," Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.


    H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets, J. Math. Phys., 47 (2006), 2209-38.doi: 10.1063/1.2165797.


    H. Cendra and S. Grillo, Lagrangian systems with higher order constraints, J. Math. Phys., 48 (2007), 35 pp.


    H. Cendra, A. Ibort, M. de León and D. Martin de Diego, A generalization of Chetaev's principle for a class of higher order non-holonomic constraints, J. Math. Phys., 45 (2004), 2785-2801.doi: 10.1063/1.1763245.


    D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, "The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems," ESIAM: Control, Optimisation and Calculus of Variations, 2001.


    B. Gharesifard, A. D. Lewis and A.-R. Mansouri, A geometric framework for stabilization by energy shaping: Sufficient conditions for existence of solutions, Communications for Information and Systems, 8 (2008), 353-398.


    S. Grillo, "Sistemas Noholónomos Generalizados," Ph.D thesis, Dto. de Matemática, UNSur, 2007. In spanish.


    S. Grillo, Higher order constrained Hamiltonian systems, J. Math. Phys., 50 (2009), 34 pp.


    S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems, International Journal of Geometric Methods in Modern Physics, 2010. In press.doi: 10.1142/S0219887810004580.


    H. Khalil, "Nonlinear Systems," Upper Saddle River NJ, Prentice Hall, 1996.


    S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry," New York, John Wiley & Son, 1963.


    C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Geometrical Structures for Physical Theories, II (Vietri, 1996), Rend. Sem. Mat. Univ. Pol. Torino 54 (1996), 353-364; Various approaches to conservative and nonconservative non-holonomic systems, Rep. Math. Phys., 42 (1998), 211-229 (MR1656282).


    J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994.


    J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications," New York, Springer-Verlag, 2001.


    R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment, IEEE Trans. Aut. Control, 47 (2002), 1281-1233.doi: 10.1109/TAC.2002.800770.


    D. Pérez, Sistemas noholónomos generalizados y su aplicación a la teoría de control automático mediante vínculos cinemáticos, Proyecto Integrador, Carrera de Ingeniería Mecánica del Instituto Balseiro, (2006).


    D. Pérez, "Sistemas con vínculos de orden superior y su aplicación a la teoría de control automático," Master thesis, Instituto Balseiro, 2007.


    J. Rayleigh, "The Theory of Sound," 2nd edition, Dover Publications, New York, 1945.


    A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Transactions on Automatic Control, 50 (2005), 1164-1176.doi: 10.1109/TAC.2005.852568.


    E. Sontag, "Mathematical Control Theory," Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998.


    M. W. Spong, P. Corke and R. Lozano, Nonlinear control of the inertia wheel pendulum, Automatica, 37 (2001), 1845-1851.doi: 10.1016/S0005-1098(01)00145-5.


    E. T. Whittaker, "A Treatise on The Analytical Dynamics of Particles and Rigid Bodies," Cambridge University Press, Cambridge, 1937.


    C. Woolsey, C. Reddy, A. Bloch, D. Chang, N. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation, European Journal of Control, 10 (2004), 478-496.doi: 10.3166/ejc.10.478-496.

  • 加载中

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint