Citation: |
[1] |
R. Abraham and J. E. Marsden, "Foundation of Mechanics," New York, Benjaming Cummings, 1985. |
[2] |
V. I. Arnold, "Mathematical Models in Classical Mechanics," Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg, 1978. |
[3] |
A. M. Bloch, "Nonholonomic Mechanics and Control," volume 24 of Interdisciplinary Applied Mathematics, Systems and Control, Springer-Verlag, New York, 2003. |
[4] |
A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems II: Potential shaping, IEEE Trans. Automat. Control, 46 (2001), 1556-71.doi: 10.1109/9.956051. |
[5] |
A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-70.doi: 10.1109/9.895562. |
[6] |
W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry," 2nd edition, Pure and Applied Mathematics, 120, Academic Press, Orlando, FL, 1986. |
[7] |
F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems," Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005. |
[8] |
H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets, J. Math. Phys., 47 (2006), 2209-38.doi: 10.1063/1.2165797. |
[9] |
H. Cendra and S. Grillo, Lagrangian systems with higher order constraints, J. Math. Phys., 48 (2007), 35 pp. |
[10] |
H. Cendra, A. Ibort, M. de León and D. Martin de Diego, A generalization of Chetaev's principle for a class of higher order non-holonomic constraints, J. Math. Phys., 45 (2004), 2785-2801.doi: 10.1063/1.1763245. |
[11] |
D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, "The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems," ESIAM: Control, Optimisation and Calculus of Variations, 2001. |
[12] |
B. Gharesifard, A. D. Lewis and A.-R. Mansouri, A geometric framework for stabilization by energy shaping: Sufficient conditions for existence of solutions, Communications for Information and Systems, 8 (2008), 353-398. |
[13] |
S. Grillo, "Sistemas Noholónomos Generalizados," Ph.D thesis, Dto. de Matemática, UNSur, 2007. In spanish. |
[14] |
S. Grillo, Higher order constrained Hamiltonian systems, J. Math. Phys., 50 (2009), 34 pp. |
[15] |
S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems, International Journal of Geometric Methods in Modern Physics, 2010. In press.doi: 10.1142/S0219887810004580. |
[16] |
H. Khalil, "Nonlinear Systems," Upper Saddle River NJ, Prentice Hall, 1996. |
[17] |
S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry," New York, John Wiley & Son, 1963. |
[18] |
C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Geometrical Structures for Physical Theories, II (Vietri, 1996), Rend. Sem. Mat. Univ. Pol. Torino 54 (1996), 353-364; Various approaches to conservative and nonconservative non-holonomic systems, Rep. Math. Phys., 42 (1998), 211-229 (MR1656282). |
[19] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994. |
[20] |
J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications," New York, Springer-Verlag, 2001. |
[21] |
R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment, IEEE Trans. Aut. Control, 47 (2002), 1281-1233.doi: 10.1109/TAC.2002.800770. |
[22] |
D. Pérez, Sistemas noholónomos generalizados y su aplicación a la teoría de control automático mediante vínculos cinemáticos, Proyecto Integrador, Carrera de Ingeniería Mecánica del Instituto Balseiro, (2006). |
[23] |
D. Pérez, "Sistemas con vínculos de orden superior y su aplicación a la teoría de control automático," Master thesis, Instituto Balseiro, 2007. |
[24] |
J. Rayleigh, "The Theory of Sound," 2nd edition, Dover Publications, New York, 1945. |
[25] |
A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Transactions on Automatic Control, 50 (2005), 1164-1176.doi: 10.1109/TAC.2005.852568. |
[26] |
E. Sontag, "Mathematical Control Theory," Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998. |
[27] |
M. W. Spong, P. Corke and R. Lozano, Nonlinear control of the inertia wheel pendulum, Automatica, 37 (2001), 1845-1851.doi: 10.1016/S0005-1098(01)00145-5. |
[28] |
E. T. Whittaker, "A Treatise on The Analytical Dynamics of Particles and Rigid Bodies," Cambridge University Press, Cambridge, 1937. |
[29] |
C. Woolsey, C. Reddy, A. Bloch, D. Chang, N. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation, European Journal of Control, 10 (2004), 478-496.doi: 10.3166/ejc.10.478-496. |