\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lyapunov constraints and global asymptotic stabilization

Abstract Related Papers Cited by
  • In this paper, we develop a method for stabilizing underactuated mechanical systems by imposing kinematic constraints (more precisely Lyapunov constraints). If these constraints can be implemented by actuators, i.e., if there exists a related constraint force exerted by the actuators, then the existence of a Lyapunov function for the system under consideration is guaranteed. We establish necessary and sufficient conditions for the existence and uniqueness of constraint forces. These conditions give rise to a system of PDEs whose solution is the required Lyapunov function. To illustrate our results, we solve these PDEs for certain underactuated mechanical systems of interest such as the inertia wheel-pendulum, the inverted pendulum on a cart system and the ball and beam system.
    Mathematics Subject Classification: Primary: 93D20; Secondary: 53Z05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. E. Marsden, "Foundation of Mechanics," New York, Benjaming Cummings, 1985.

    [2]

    V. I. Arnold, "Mathematical Models in Classical Mechanics," Graduate Texts in Mathematics, 60, Springer-Verlag, New York-Heidelberg, 1978.

    [3]

    A. M. Bloch, "Nonholonomic Mechanics and Control," volume 24 of Interdisciplinary Applied Mathematics, Systems and Control, Springer-Verlag, New York, 2003.

    [4]

    A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems II: Potential shaping, IEEE Trans. Automat. Control, 46 (2001), 1556-71.doi: 10.1109/9.956051.

    [5]

    A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangian and the stabilization of mechanical systems I: The first matching theorem, IEEE Trans. Automat. Control, 45 (2000), 2253-70.doi: 10.1109/9.895562.

    [6]

    W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry," 2nd edition, Pure and Applied Mathematics, 120, Academic Press, Orlando, FL, 1986.

    [7]

    F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems," Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.

    [8]

    H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets, J. Math. Phys., 47 (2006), 2209-38.doi: 10.1063/1.2165797.

    [9]

    H. Cendra and S. Grillo, Lagrangian systems with higher order constraints, J. Math. Phys., 48 (2007), 35 pp.

    [10]

    H. Cendra, A. Ibort, M. de León and D. Martin de Diego, A generalization of Chetaev's principle for a class of higher order non-holonomic constraints, J. Math. Phys., 45 (2004), 2785-2801.doi: 10.1063/1.1763245.

    [11]

    D. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. Woolsey, "The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems," ESIAM: Control, Optimisation and Calculus of Variations, 2001.

    [12]

    B. Gharesifard, A. D. Lewis and A.-R. Mansouri, A geometric framework for stabilization by energy shaping: Sufficient conditions for existence of solutions, Communications for Information and Systems, 8 (2008), 353-398.

    [13]

    S. Grillo, "Sistemas Noholónomos Generalizados," Ph.D thesis, Dto. de Matemática, UNSur, 2007. In spanish.

    [14]

    S. Grillo, Higher order constrained Hamiltonian systems, J. Math. Phys., 50 (2009), 34 pp.

    [15]

    S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems, International Journal of Geometric Methods in Modern Physics, 2010. In press.doi: 10.1142/S0219887810004580.

    [16]

    H. Khalil, "Nonlinear Systems," Upper Saddle River NJ, Prentice Hall, 1996.

    [17]

    S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry," New York, John Wiley & Son, 1963.

    [18]

    C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Geometrical Structures for Physical Theories, II (Vietri, 1996), Rend. Sem. Mat. Univ. Pol. Torino 54 (1996), 353-364; Various approaches to conservative and nonconservative non-holonomic systems, Rep. Math. Phys., 42 (1998), 211-229 (MR1656282).

    [19]

    J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994.

    [20]

    J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications," New York, Springer-Verlag, 2001.

    [21]

    R. Ortega, M. W. Spong, F. Gómez-Estern and G. Blankenstein, Stabilization of underactuated mechanical systems via interconnection and damping assignment, IEEE Trans. Aut. Control, 47 (2002), 1281-1233.doi: 10.1109/TAC.2002.800770.

    [22]

    D. Pérez, Sistemas noholónomos generalizados y su aplicación a la teoría de control automático mediante vínculos cinemáticos, Proyecto Integrador, Carrera de Ingeniería Mecánica del Instituto Balseiro, (2006).

    [23]

    D. Pérez, "Sistemas con vínculos de orden superior y su aplicación a la teoría de control automático," Master thesis, Instituto Balseiro, 2007.

    [24]

    J. Rayleigh, "The Theory of Sound," 2nd edition, Dover Publications, New York, 1945.

    [25]

    A. Shiriaev, J. W. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Transactions on Automatic Control, 50 (2005), 1164-1176.doi: 10.1109/TAC.2005.852568.

    [26]

    E. Sontag, "Mathematical Control Theory," Texts in Applied Mathematics, 6, Springer-Verlag, New York, 1998.

    [27]

    M. W. Spong, P. Corke and R. Lozano, Nonlinear control of the inertia wheel pendulum, Automatica, 37 (2001), 1845-1851.doi: 10.1016/S0005-1098(01)00145-5.

    [28]

    E. T. Whittaker, "A Treatise on The Analytical Dynamics of Particles and Rigid Bodies," Cambridge University Press, Cambridge, 1937.

    [29]

    C. Woolsey, C. Reddy, A. Bloch, D. Chang, N. Leonard and J. Marsden, Controlled Lagrangian systems with gyroscopic forcing and dissipation, European Journal of Control, 10 (2004), 478-496.doi: 10.3166/ejc.10.478-496.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(85) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return