Citation: |
[1] |
A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'' Springer, 2003. |
[2] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.doi: 10.1007/BF02199365. |
[3] |
A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems, Dynamical Systems, 24 (2009), 187-222.doi: 10.1080/14689360802609344. |
[4] |
F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems, Math. Proc. Camb. Phil. Soc., 132 (2002), 323-351.doi: 10.1017/S0305004101005679. |
[5] |
H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'' Memoirs of the American Mathematical Society 152, AMS 2001. |
[6] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems, in "Mathematics Unlimited -- 2001 and Beyond'' (eds. B. Engquist and W. Schmid), Springer (2001), 221-273. |
[7] |
J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'' Lecture Notes in Mathematics 1793, Springer, 2002. |
[8] |
M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups, J. Math. Phys., 49 (2008), 032901.doi: 10.1063/1.2885077. |
[9] |
M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry, Acta Appl. Math., 105 (2009), 241-266.doi: 10.1007/s10440-008-9274-7. |
[10] |
M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics, Dynamical Systems, 25 (2010), 159-187.doi: 10.1080/14689360903360888. |
[11] |
M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'' LMS Lecture Notes 59, Cambridge University Press, 1988. |
[12] |
R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'' Advanced Series in Nonlinear Dynamics 26, World Scientific, 2010. |
[13] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-R308.doi: 10.1088/0305-4470/38/24/R01. |
[14] |
K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, "The Breadth of Symplectic Geometry'' (eds. J. E. Marsden and T. S. Ratiu), Birkhäuser, 2005, 75-116. |
[15] |
B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations, Nonlinearity, 14 (2001), 1555-1567.doi: 10.1088/0951-7715/14/6/308. |
[16] |
J. Koiller, Reduction of some classical non-holonomic systems with symmetry, Arch. Rat. Mech. Anal., 118 (1992), 113-148.doi: 10.1007/BF00375092. |
[17] |
O. Krupková, Mechanical systems with non-holonomic constraints, J. Math. Phys., 38 (1997), 5098-5126.doi: 10.1063/1.532196. |
[18] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'' Texts in Applied Mathematics 17, Springer, 1999. |
[19] |
J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations, J. Math. Phys., 41 (2000), 3379-3429.doi: 10.1063/1.533317. |
[20] |
T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations, J. Phys. A: Math. Theor., 41 (2008), 344015.doi: 10.1088/1751-8113/41/34/344015. |
[21] |
T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems, J. Phys. A: Math. Gen., 38 (2005), 1097-1111.doi: 10.1088/0305-4470/38/5/011. |
[22] |
J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'' Transl. of Math. Monographs 33, AMS, 1972. |
[23] |
W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems, J. Phys. A: Math. Gen., 28 (1995), 3253-3268.doi: 10.1088/0305-4470/28/11/022. |
[24] |
J. Vilms, Connections on tangent bundles, J. Diff. Geom., 1 (1967), 235-243. |