March  2011, 3(1): 23-40. doi: 10.3934/jgm.2011.3.23

Reduction of invariant constrained systems using anholonomic frames

1. 

Department of Mathematics, Ghent University, Krijgslaan 281, S9, B-9000 Gent, Belgium, Belgium

Received  October 2010 Revised  April 2011 Published  April 2011

We analyze two reduction methods for nonholonomic systems that are invariant under the action of a Lie group on the configuration space. Our approach for obtaining the reduced equations is entirely based on the observation that the dynamics can be represented by a second-order differential equations vector field and that in both cases the reduced dynamics can be described by expressing that vector field in terms of an appropriately chosen anholonomic frame.
Citation: Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23
References:
[1]

A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'', Springer, (2003).   Google Scholar

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[3]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[4]

F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Camb. Phil. Soc., 132 (2002), 323.  doi: 10.1017/S0305004101005679.  Google Scholar

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'', Memoirs of the American Mathematical Society 152, (2001).   Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in, (2001), 221.   Google Scholar

[7]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics 1793, (1793).   Google Scholar

[8]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2885077.  Google Scholar

[9]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241.  doi: 10.1007/s10440-008-9274-7.  Google Scholar

[10]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics,, Dynamical Systems, 25 (2010), 159.  doi: 10.1080/14689360903360888.  Google Scholar

[11]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'', LMS Lecture Notes 59, (1988).   Google Scholar

[12]

R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'', Advanced Series in Nonlinear Dynamics 26, (2010).   Google Scholar

[13]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[14]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, The Breadth of Symplectic Geometry, (2005), 75.   Google Scholar

[15]

B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555.  doi: 10.1088/0951-7715/14/6/308.  Google Scholar

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry,, Arch. Rat. Mech. Anal., 118 (1992), 113.  doi: 10.1007/BF00375092.  Google Scholar

[17]

O. Krupková, Mechanical systems with non-holonomic constraints,, J. Math. Phys., 38 (1997), 5098.  doi: 10.1063/1.532196.  Google Scholar

[18]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'', Texts in Applied Mathematics 17, (1999).   Google Scholar

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[20]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/34/344015.  Google Scholar

[21]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, J. Phys. A: Math. Gen., 38 (2005), 1097.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[22]

J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'', Transl. of Math. Monographs 33, (1972).   Google Scholar

[23]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A: Math. Gen., 28 (1995), 3253.  doi: 10.1088/0305-4470/28/11/022.  Google Scholar

[24]

J. Vilms, Connections on tangent bundles,, J. Diff. Geom., 1 (1967), 235.   Google Scholar

show all references

References:
[1]

A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'', Springer, (2003).   Google Scholar

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[3]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[4]

F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Camb. Phil. Soc., 132 (2002), 323.  doi: 10.1017/S0305004101005679.  Google Scholar

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'', Memoirs of the American Mathematical Society 152, (2001).   Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in, (2001), 221.   Google Scholar

[7]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics 1793, (1793).   Google Scholar

[8]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2885077.  Google Scholar

[9]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241.  doi: 10.1007/s10440-008-9274-7.  Google Scholar

[10]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics,, Dynamical Systems, 25 (2010), 159.  doi: 10.1080/14689360903360888.  Google Scholar

[11]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'', LMS Lecture Notes 59, (1988).   Google Scholar

[12]

R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'', Advanced Series in Nonlinear Dynamics 26, (2010).   Google Scholar

[13]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[14]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, The Breadth of Symplectic Geometry, (2005), 75.   Google Scholar

[15]

B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555.  doi: 10.1088/0951-7715/14/6/308.  Google Scholar

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry,, Arch. Rat. Mech. Anal., 118 (1992), 113.  doi: 10.1007/BF00375092.  Google Scholar

[17]

O. Krupková, Mechanical systems with non-holonomic constraints,, J. Math. Phys., 38 (1997), 5098.  doi: 10.1063/1.532196.  Google Scholar

[18]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'', Texts in Applied Mathematics 17, (1999).   Google Scholar

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[20]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/34/344015.  Google Scholar

[21]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, J. Phys. A: Math. Gen., 38 (2005), 1097.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[22]

J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'', Transl. of Math. Monographs 33, (1972).   Google Scholar

[23]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A: Math. Gen., 28 (1995), 3253.  doi: 10.1088/0305-4470/28/11/022.  Google Scholar

[24]

J. Vilms, Connections on tangent bundles,, J. Diff. Geom., 1 (1967), 235.   Google Scholar

[1]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[2]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[3]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[4]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[5]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[6]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[10]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[11]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[14]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[17]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[18]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]