March  2011, 3(1): 23-40. doi: 10.3934/jgm.2011.3.23

Reduction of invariant constrained systems using anholonomic frames

1. 

Department of Mathematics, Ghent University, Krijgslaan 281, S9, B-9000 Gent, Belgium, Belgium

Received  October 2010 Revised  April 2011 Published  April 2011

We analyze two reduction methods for nonholonomic systems that are invariant under the action of a Lie group on the configuration space. Our approach for obtaining the reduced equations is entirely based on the observation that the dynamics can be represented by a second-order differential equations vector field and that in both cases the reduced dynamics can be described by expressing that vector field in terms of an appropriately chosen anholonomic frame.
Citation: Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23
References:
[1]

A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'', Springer, (2003).   Google Scholar

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[3]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[4]

F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Camb. Phil. Soc., 132 (2002), 323.  doi: 10.1017/S0305004101005679.  Google Scholar

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'', Memoirs of the American Mathematical Society 152, (2001).   Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in, (2001), 221.   Google Scholar

[7]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics 1793, (1793).   Google Scholar

[8]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2885077.  Google Scholar

[9]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241.  doi: 10.1007/s10440-008-9274-7.  Google Scholar

[10]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics,, Dynamical Systems, 25 (2010), 159.  doi: 10.1080/14689360903360888.  Google Scholar

[11]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'', LMS Lecture Notes 59, (1988).   Google Scholar

[12]

R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'', Advanced Series in Nonlinear Dynamics 26, (2010).   Google Scholar

[13]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[14]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, The Breadth of Symplectic Geometry, (2005), 75.   Google Scholar

[15]

B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555.  doi: 10.1088/0951-7715/14/6/308.  Google Scholar

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry,, Arch. Rat. Mech. Anal., 118 (1992), 113.  doi: 10.1007/BF00375092.  Google Scholar

[17]

O. Krupková, Mechanical systems with non-holonomic constraints,, J. Math. Phys., 38 (1997), 5098.  doi: 10.1063/1.532196.  Google Scholar

[18]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'', Texts in Applied Mathematics 17, (1999).   Google Scholar

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[20]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/34/344015.  Google Scholar

[21]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, J. Phys. A: Math. Gen., 38 (2005), 1097.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[22]

J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'', Transl. of Math. Monographs 33, (1972).   Google Scholar

[23]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A: Math. Gen., 28 (1995), 3253.  doi: 10.1088/0305-4470/28/11/022.  Google Scholar

[24]

J. Vilms, Connections on tangent bundles,, J. Diff. Geom., 1 (1967), 235.   Google Scholar

show all references

References:
[1]

A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'', Springer, (2003).   Google Scholar

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[3]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[4]

F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Camb. Phil. Soc., 132 (2002), 323.  doi: 10.1017/S0305004101005679.  Google Scholar

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'', Memoirs of the American Mathematical Society 152, (2001).   Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in, (2001), 221.   Google Scholar

[7]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics 1793, (1793).   Google Scholar

[8]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2885077.  Google Scholar

[9]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241.  doi: 10.1007/s10440-008-9274-7.  Google Scholar

[10]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics,, Dynamical Systems, 25 (2010), 159.  doi: 10.1080/14689360903360888.  Google Scholar

[11]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'', LMS Lecture Notes 59, (1988).   Google Scholar

[12]

R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'', Advanced Series in Nonlinear Dynamics 26, (2010).   Google Scholar

[13]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[14]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, The Breadth of Symplectic Geometry, (2005), 75.   Google Scholar

[15]

B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555.  doi: 10.1088/0951-7715/14/6/308.  Google Scholar

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry,, Arch. Rat. Mech. Anal., 118 (1992), 113.  doi: 10.1007/BF00375092.  Google Scholar

[17]

O. Krupková, Mechanical systems with non-holonomic constraints,, J. Math. Phys., 38 (1997), 5098.  doi: 10.1063/1.532196.  Google Scholar

[18]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'', Texts in Applied Mathematics 17, (1999).   Google Scholar

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[20]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/34/344015.  Google Scholar

[21]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, J. Phys. A: Math. Gen., 38 (2005), 1097.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[22]

J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'', Transl. of Math. Monographs 33, (1972).   Google Scholar

[23]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A: Math. Gen., 28 (1995), 3253.  doi: 10.1088/0305-4470/28/11/022.  Google Scholar

[24]

J. Vilms, Connections on tangent bundles,, J. Diff. Geom., 1 (1967), 235.   Google Scholar

[1]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[2]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[3]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[4]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[5]

Zhimin Chen, Kaihui Liu, Xiuxiang Liu. Evaluating vaccination effectiveness of group-specific fractional-dose strategies. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021062

[6]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[7]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[8]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[9]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[10]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[11]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[12]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[13]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[14]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[15]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[16]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[17]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[18]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[19]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[20]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]