June  2011, 3(2): 261-275. doi: 10.3934/jgm.2011.3.261

Euler-Poincaré reduction for systems with configuration space isotropy

1. 

Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, NC 28723, United States

2. 

Department of Computer Science, University of Toronto, 10 King’s College Road, Room 3302, Toronto, ON, M5S 3G4, Canada

3. 

Department of Mathematics, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5, Canada

Received  February 2010 Revised  June 2011 Published  July 2011

This paper concerns Lagrangian systems with symmetries, near points with configuration space isotropy. Using twisted parametrisations corresponding to phase space slices based at zero points of tangent fibres, we deduce reduced equations of motion, which are a hybrid of the Euler-Poincaré and Euler-Lagrange equations. Further, we state a corresponding variational principle.
Citation: Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition,, Benjamin/Cummings Publishing Co., (1978).   Google Scholar

[2]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. on Systems and Control, 45 (2000), 2253.  doi: 10.1109/9.895562.  Google Scholar

[3]

A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. on Automatic Control, 46 (2001), 1556.   Google Scholar

[4]

H. Cendra, J. E. Marsden and T. Ratiu, "Lagrangian Reduction by Stages,", Memoirs of the American Mathematical Society, 152 (2001).   Google Scholar

[5]

R. Cushman and L. Bates, "Global Aspects of Classical Integrable Systems,", Birkhäuser Verlag, (1997).  doi: 10.1007/978-3-0348-8891-2.  Google Scholar

[6]

V. Guillemin and S. Sternberg, A normal form for the moment map,, In, 6 (1984).   Google Scholar

[7]

J. J. Duistermaat and J. A. C. Kolk, "Lie Groups,", Springer-Verlag, (2000).  doi: 10.1007/978-3-642-56936-4.  Google Scholar

[8]

D. D. Holm, T. Schmah and C. Stoica, "Geometric Mechanics and Symmetry: from Finite to Infinite Dimensions,", Oxford Texts in Applied and Engineering Mathematics, 12 (2009).   Google Scholar

[9]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.  doi: 10.1088/0951-7715/11/6/012.  Google Scholar

[10]

D. Lewis, Lagrangian block diagonalization,, Journal of Dynamics and Differential Equations, 4 (1992), 1.  doi: 10.1007/BF01048153.  Google Scholar

[11]

C.-M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique,, Rendiconti del Seminario Matematico, 43 (1985), 227.   Google Scholar

[12]

J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992).   Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," 2nd edition., Texts in Applied Mathematics, 17 (1999).   Google Scholar

[14]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Rep. Math. Phys., 5 (1974), 121.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[15]

J. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.  doi: 10.1016/S0764-4442(99)80389-9.  Google Scholar

[16]

J. Montaldi and R. M. Roberts, Relative Equilibria of Molecules,, J. Nonlinear Sci., 9 (1999), 53.  doi: 10.1007/s003329900064.  Google Scholar

[17]

J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.  doi: 10.1088/0951-7715/12/3/315.  Google Scholar

[18]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics, 222 (2004).   Google Scholar

[19]

G. W. Patrick, Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space,, J. Geom. Phys., 9 (1992), 111.  doi: 10.1016/0393-0440(92)90015-S.  Google Scholar

[20]

R. Palais, On the existence of slices for actions of non-compact Lie groups,, Ann. Math., 73 (1961), 295.  doi: 10.2307/1970335.  Google Scholar

[21]

M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.  doi: 10.1088/0951-7715/19/4/005.  Google Scholar

[22]

R. M. Roberts and M. E. R. de Sousa Dias, Bifurcations from relative equilibria of Hamiltonian systems,, Nonlinearity, 10 (1997), 1719.  doi: 10.1088/0951-7715/10/6/015.  Google Scholar

[23]

M. Roberts, T. Schmah and C. Stoica, Relative equilibria in systems with configuration space isotropy,, J. Geom. Phys., 56 (2006), 762.  doi: 10.1016/j.geomphys.2005.04.017.  Google Scholar

[24]

R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Ann. of Math., 134 (1991), 375.  doi: 10.2307/2944350.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition,, Benjamin/Cummings Publishing Co., (1978).   Google Scholar

[2]

A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. on Systems and Control, 45 (2000), 2253.  doi: 10.1109/9.895562.  Google Scholar

[3]

A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. on Automatic Control, 46 (2001), 1556.   Google Scholar

[4]

H. Cendra, J. E. Marsden and T. Ratiu, "Lagrangian Reduction by Stages,", Memoirs of the American Mathematical Society, 152 (2001).   Google Scholar

[5]

R. Cushman and L. Bates, "Global Aspects of Classical Integrable Systems,", Birkhäuser Verlag, (1997).  doi: 10.1007/978-3-0348-8891-2.  Google Scholar

[6]

V. Guillemin and S. Sternberg, A normal form for the moment map,, In, 6 (1984).   Google Scholar

[7]

J. J. Duistermaat and J. A. C. Kolk, "Lie Groups,", Springer-Verlag, (2000).  doi: 10.1007/978-3-642-56936-4.  Google Scholar

[8]

D. D. Holm, T. Schmah and C. Stoica, "Geometric Mechanics and Symmetry: from Finite to Infinite Dimensions,", Oxford Texts in Applied and Engineering Mathematics, 12 (2009).   Google Scholar

[9]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.  doi: 10.1088/0951-7715/11/6/012.  Google Scholar

[10]

D. Lewis, Lagrangian block diagonalization,, Journal of Dynamics and Differential Equations, 4 (1992), 1.  doi: 10.1007/BF01048153.  Google Scholar

[11]

C.-M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique,, Rendiconti del Seminario Matematico, 43 (1985), 227.   Google Scholar

[12]

J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992).   Google Scholar

[13]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," 2nd edition., Texts in Applied Mathematics, 17 (1999).   Google Scholar

[14]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Rep. Math. Phys., 5 (1974), 121.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[15]

J. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.  doi: 10.1016/S0764-4442(99)80389-9.  Google Scholar

[16]

J. Montaldi and R. M. Roberts, Relative Equilibria of Molecules,, J. Nonlinear Sci., 9 (1999), 53.  doi: 10.1007/s003329900064.  Google Scholar

[17]

J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.  doi: 10.1088/0951-7715/12/3/315.  Google Scholar

[18]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics, 222 (2004).   Google Scholar

[19]

G. W. Patrick, Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space,, J. Geom. Phys., 9 (1992), 111.  doi: 10.1016/0393-0440(92)90015-S.  Google Scholar

[20]

R. Palais, On the existence of slices for actions of non-compact Lie groups,, Ann. Math., 73 (1961), 295.  doi: 10.2307/1970335.  Google Scholar

[21]

M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.  doi: 10.1088/0951-7715/19/4/005.  Google Scholar

[22]

R. M. Roberts and M. E. R. de Sousa Dias, Bifurcations from relative equilibria of Hamiltonian systems,, Nonlinearity, 10 (1997), 1719.  doi: 10.1088/0951-7715/10/6/015.  Google Scholar

[23]

M. Roberts, T. Schmah and C. Stoica, Relative equilibria in systems with configuration space isotropy,, J. Geom. Phys., 56 (2006), 762.  doi: 10.1016/j.geomphys.2005.04.017.  Google Scholar

[24]

R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Ann. of Math., 134 (1991), 375.  doi: 10.2307/2944350.  Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[4]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[5]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[6]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[7]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[13]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[16]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[17]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[18]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[19]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[20]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (1)

[Back to Top]