-
Previous Article
Euler equations on a semi-direct product of the diffeomorphisms group by itself
- JGM Home
- This Issue
- Next Article
Infinitesimal gauge symmetries of closed forms
1. | Instituto Superior Técnico, dep. de Matemática, Av. Rovisco Pais 1049-001 Lisboa, Portugal |
References:
[1] |
A. Alekseev, A. Malkin and E. Meinreken, Lie group valued moment maps,, J. of Differential Geom., 48 (1998), 445.
|
[2] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1987). Google Scholar |
[3] |
J. C. Baez, Higher Yang-Mills theory,, preprint, (). Google Scholar |
[4] |
J. C. Baez and A. S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras,, Theory and Applications of Categories, 12 (2004), 492.
|
[5] |
J. C. Baez and A. D. Lauda, Higher-dimensional algebra. V. 2-groups,, Theory and Applications of Categories, 12 (2004), 423.
|
[6] |
J. C. Baez and J. Huerta, An invitation to higher Gauge theory,, \arXiv{1003.4485}., (). Google Scholar |
[7] |
J. C. Baez, A. E. Hoffnung and C. L. Rogers, Categorified symplectic geometry and the classical string,, Comm. Math. Phys., 293 (2010), 701.
doi: 10.1007/s00220-009-0951-9. |
[8] |
J. C. Baez and U. Schreier, Higher gauge theory: 2-connections on 2-bundles,, preprint, (2004). Google Scholar |
[9] |
O. Brahic, Extensions of Lie brackets,, Journal of Geometry and Physics, 60 (2010), 352.
doi: 10.1016/j.geomphys.2009.10.006. |
[10] |
O. Brahic and C. Zhu, Lie algebroid fibrations,, Adv. Math., 226 (2011), 3105.
doi: 10.1016/j.aim.2010.10.006. |
[11] |
L. Breena nd W. Messing, Differential geometry of gerbes,, Adv. Math., 198 (2005), 732.
doi: 10.1016/j.aim.2005.06.014. |
[12] |
J.-L. Brylinski, "Loop Spaces, Characteristic Classes and Geometric Quantization,", Progr. Math., 107 (1993).
|
[13] |
H. Bursztyn and M. Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds,, in, 232 (2005), 1.
|
[14] |
H. Bursztyn, Gil R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures,, Advances in Mathematics, 211 (2007), 726.
doi: 10.1016/j.aim.2006.09.008. |
[15] |
D. Conduché, Modules croisés généralisés de longueur 2,, in, 34 (1984), 155.
|
[16] |
M. Crainic, Prequantization and Lie brackets,, J. Symplectic Geom., 2 (2004), 579.
|
[17] |
M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math. (2), 157 (2003), 575.
doi: 10.4007/annals.2003.157.575. |
[18] |
C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable,, in, (1995), 153.
|
[19] |
V. Guillemin, E. Lerman and S. Sternberg, "Symplectic Fibrations and Multiplicity Diagrams,", Cambridge University Press, (1996).
doi: 10.1017/CBO9780511574788. |
[20] |
M. Gotay, R. Lashof, J. Śniatycki and A. Weinstein, Closed forms on symplectic fibre bundles,, Comm. Math. Helv., 58 (1983), 617.
doi: 10.1007/BF02564656. |
[21] |
V. Guillemin and S. Sternberg, "Symplectic Techniques in Physics,", 2nd edition, (1990).
|
[22] |
F. Lalonde and D. McDuff, Symplectic structures on fibre bundles,, Topology, 42 (2003), 309.
doi: 10.1016/S0040-9383(01)00020-9. |
[23] |
D. McDuff and D. Salamon, "Introduction to Symplectic Topology,", 2nd edition, (1998).
|
[24] |
D. McDuff, Enlarging the Hamiltonian group,, Conference on Symplectic Topology, 3 (2005), 481.
|
[25] |
J. F. Martins and R. Picken, On two-dimensional holonomy,, Trans. Amer. Math. Soc., 362 (2010), 5657.
doi: 10.1090/S0002-9947-2010-04857-3. |
[26] |
J. F. Martins and R. Picken, A cubical set approach to 2-bundles with connection and Wilson surfaces,, \arXiv{0808.3964}., (). Google Scholar |
[27] |
J. F. Martins and R. Picken, The fundamental Gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module,, Differential Geom. Appl., 29 (2011), 179.
doi: 10.1016/j.difgeo.2010.10.002. |
[28] |
J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux,, C.R. Acad. Sci. Paris Sér. A-B, 264 (1967).
|
[29] |
D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, in, (2001).
|
[30] |
D. Roytenberg and A. Weinstein, Courant algebroids and strongly homotopy Lie algebras,, Lett. Math. Phys., 46 (1998), 81.
doi: 10.1023/A:1007452512084. |
[31] |
C. L. Rogers, 2-plectic geometry, Courant algebroids and categorified prequantizations,, \arXiv{1001.0040v2}., (). Google Scholar |
[32] |
P. Ševera and A. Weinstein, Poisson geometry with a 3-form background. Noncommutative geometry and string theory, (Yokohama, 2001),, Progr. Theoret. Phys. Suppl. No., 144 (2001), 145.
|
[33] |
U. Schreiber and K. Waldorf, Smooth functors vs. differential forms,, Homology, 13 (2011), 143.
doi: 10.4310/HHA.2011.v13.n1.a6. |
[34] |
U. Schreiber and K. Waldorf, Connections on non-abelian Gerbes and their Holonomy,, \arXiv{0808.1923v1}., (). Google Scholar |
[35] |
S. Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field,, Proc. Nat. Acad. Sci. USA, 74 (1977), 5253.
doi: 10.1073/pnas.74.12.5253. |
[36] |
F. Toppan, On anomalies in classical dynamics,, Journal of Nonlinear Mathematical Physics, 8 (2001), 518.
doi: 10.2991/jnmp.2001.8.4.6. |
[37] |
A. Tsemo, Gerbes, 2-gerbes and symplectic fibrations,, Rocky Mountain J. Math., 38 (2008), 727.
|
[38] |
B. Uribe, Group actions on dg-manifolds and their relation to equivariant cohomology,, \arXiv{1010.5413v1}., (). Google Scholar |
[39] |
A. Weinstein, A universal phase space for particles in a Yang-Mills field,, Letters in Mathematical Physycs, 2 (): 417.
doi: 10.1007/BF00400169. |
[40] |
A. Weinstein, Fat bundles and symplectic manifolds,, Adv. in Math., 37 (1980), 239.
doi: 10.1016/0001-8708(80)90035-3. |
show all references
References:
[1] |
A. Alekseev, A. Malkin and E. Meinreken, Lie group valued moment maps,, J. of Differential Geom., 48 (1998), 445.
|
[2] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics,", 2nd edition, (1987). Google Scholar |
[3] |
J. C. Baez, Higher Yang-Mills theory,, preprint, (). Google Scholar |
[4] |
J. C. Baez and A. S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras,, Theory and Applications of Categories, 12 (2004), 492.
|
[5] |
J. C. Baez and A. D. Lauda, Higher-dimensional algebra. V. 2-groups,, Theory and Applications of Categories, 12 (2004), 423.
|
[6] |
J. C. Baez and J. Huerta, An invitation to higher Gauge theory,, \arXiv{1003.4485}., (). Google Scholar |
[7] |
J. C. Baez, A. E. Hoffnung and C. L. Rogers, Categorified symplectic geometry and the classical string,, Comm. Math. Phys., 293 (2010), 701.
doi: 10.1007/s00220-009-0951-9. |
[8] |
J. C. Baez and U. Schreier, Higher gauge theory: 2-connections on 2-bundles,, preprint, (2004). Google Scholar |
[9] |
O. Brahic, Extensions of Lie brackets,, Journal of Geometry and Physics, 60 (2010), 352.
doi: 10.1016/j.geomphys.2009.10.006. |
[10] |
O. Brahic and C. Zhu, Lie algebroid fibrations,, Adv. Math., 226 (2011), 3105.
doi: 10.1016/j.aim.2010.10.006. |
[11] |
L. Breena nd W. Messing, Differential geometry of gerbes,, Adv. Math., 198 (2005), 732.
doi: 10.1016/j.aim.2005.06.014. |
[12] |
J.-L. Brylinski, "Loop Spaces, Characteristic Classes and Geometric Quantization,", Progr. Math., 107 (1993).
|
[13] |
H. Bursztyn and M. Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds,, in, 232 (2005), 1.
|
[14] |
H. Bursztyn, Gil R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures,, Advances in Mathematics, 211 (2007), 726.
doi: 10.1016/j.aim.2006.09.008. |
[15] |
D. Conduché, Modules croisés généralisés de longueur 2,, in, 34 (1984), 155.
|
[16] |
M. Crainic, Prequantization and Lie brackets,, J. Symplectic Geom., 2 (2004), 579.
|
[17] |
M. Crainic and R. L. Fernandes, Integrability of Lie brackets,, Ann. of Math. (2), 157 (2003), 575.
doi: 10.4007/annals.2003.157.575. |
[18] |
C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable,, in, (1995), 153.
|
[19] |
V. Guillemin, E. Lerman and S. Sternberg, "Symplectic Fibrations and Multiplicity Diagrams,", Cambridge University Press, (1996).
doi: 10.1017/CBO9780511574788. |
[20] |
M. Gotay, R. Lashof, J. Śniatycki and A. Weinstein, Closed forms on symplectic fibre bundles,, Comm. Math. Helv., 58 (1983), 617.
doi: 10.1007/BF02564656. |
[21] |
V. Guillemin and S. Sternberg, "Symplectic Techniques in Physics,", 2nd edition, (1990).
|
[22] |
F. Lalonde and D. McDuff, Symplectic structures on fibre bundles,, Topology, 42 (2003), 309.
doi: 10.1016/S0040-9383(01)00020-9. |
[23] |
D. McDuff and D. Salamon, "Introduction to Symplectic Topology,", 2nd edition, (1998).
|
[24] |
D. McDuff, Enlarging the Hamiltonian group,, Conference on Symplectic Topology, 3 (2005), 481.
|
[25] |
J. F. Martins and R. Picken, On two-dimensional holonomy,, Trans. Amer. Math. Soc., 362 (2010), 5657.
doi: 10.1090/S0002-9947-2010-04857-3. |
[26] |
J. F. Martins and R. Picken, A cubical set approach to 2-bundles with connection and Wilson surfaces,, \arXiv{0808.3964}., (). Google Scholar |
[27] |
J. F. Martins and R. Picken, The fundamental Gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module,, Differential Geom. Appl., 29 (2011), 179.
doi: 10.1016/j.difgeo.2010.10.002. |
[28] |
J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux,, C.R. Acad. Sci. Paris Sér. A-B, 264 (1967).
|
[29] |
D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, in, (2001).
|
[30] |
D. Roytenberg and A. Weinstein, Courant algebroids and strongly homotopy Lie algebras,, Lett. Math. Phys., 46 (1998), 81.
doi: 10.1023/A:1007452512084. |
[31] |
C. L. Rogers, 2-plectic geometry, Courant algebroids and categorified prequantizations,, \arXiv{1001.0040v2}., (). Google Scholar |
[32] |
P. Ševera and A. Weinstein, Poisson geometry with a 3-form background. Noncommutative geometry and string theory, (Yokohama, 2001),, Progr. Theoret. Phys. Suppl. No., 144 (2001), 145.
|
[33] |
U. Schreiber and K. Waldorf, Smooth functors vs. differential forms,, Homology, 13 (2011), 143.
doi: 10.4310/HHA.2011.v13.n1.a6. |
[34] |
U. Schreiber and K. Waldorf, Connections on non-abelian Gerbes and their Holonomy,, \arXiv{0808.1923v1}., (). Google Scholar |
[35] |
S. Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field,, Proc. Nat. Acad. Sci. USA, 74 (1977), 5253.
doi: 10.1073/pnas.74.12.5253. |
[36] |
F. Toppan, On anomalies in classical dynamics,, Journal of Nonlinear Mathematical Physics, 8 (2001), 518.
doi: 10.2991/jnmp.2001.8.4.6. |
[37] |
A. Tsemo, Gerbes, 2-gerbes and symplectic fibrations,, Rocky Mountain J. Math., 38 (2008), 727.
|
[38] |
B. Uribe, Group actions on dg-manifolds and their relation to equivariant cohomology,, \arXiv{1010.5413v1}., (). Google Scholar |
[39] |
A. Weinstein, A universal phase space for particles in a Yang-Mills field,, Letters in Mathematical Physycs, 2 (): 417.
doi: 10.1007/BF00400169. |
[40] |
A. Weinstein, Fat bundles and symplectic manifolds,, Adv. in Math., 37 (1980), 239.
doi: 10.1016/0001-8708(80)90035-3. |
[1] |
Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112 |
[2] |
Michael Hochman. Lectures on dynamics, fractal geometry, and metric number theory. Journal of Modern Dynamics, 2014, 8 (3&4) : 437-497. doi: 10.3934/jmd.2014.8.437 |
[3] |
Paul Bracken. Connections of zero curvature and applications to nonlinear partial differential equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1165-1179. doi: 10.3934/dcdss.2014.7.1165 |
[4] |
Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127 |
[5] |
Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009 |
[6] |
Robert J. McCann. A glimpse into the differential topology and geometry of optimal transport. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1605-1621. doi: 10.3934/dcds.2014.34.1605 |
[7] |
Katarzyna Grabowska, Luca Vitagliano. Tulczyjew triples in higher derivative field theory. Journal of Geometric Mechanics, 2015, 7 (1) : 1-33. doi: 10.3934/jgm.2015.7.1 |
[8] |
Penka Georgieva, Aleksey Zinger. Real orientations, real Gromov-Witten theory, and real enumerative geometry. Electronic Research Announcements, 2017, 24: 87-99. doi: 10.3934/era.2017.24.010 |
[9] |
Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784 |
[10] |
Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065 |
[11] |
Wilhelm Schlag. Spectral theory and nonlinear partial differential equations: A survey. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 703-723. doi: 10.3934/dcds.2006.15.703 |
[12] |
Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020021 |
[13] |
Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 75-84. doi: 10.3934/cpaa.2004.3.75 |
[14] |
Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1 |
[15] |
Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257 |
[16] |
Peiguang Wang, Xiran Wu, Huina Liu. Higher order convergence for a class of set differential equations with initial conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020342 |
[17] |
Antonio Cañada, Salvador Villegas. Lyapunov inequalities for partial differential equations at radial higher eigenvalues. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 111-122. doi: 10.3934/dcds.2013.33.111 |
[18] |
Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124 |
[19] |
R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203 |
[20] |
David Mieczkowski. The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory. Journal of Modern Dynamics, 2007, 1 (1) : 61-92. doi: 10.3934/jmd.2007.1.61 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]