Citation: |
[1] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics," Second edition, revised and enlarged, With the assistance of Tudor Raţiu and Richard Cushman, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
M. Audin, "Spinning Tops. A Course on Integrable Systems," Cambridge Studies in Advanced Mathematics, 51, Cambridge University Press, Cambridge, 1996. |
[3] |
O. Babelon and C.-M. Viallet, Hamiltonian structures and Lax equations, Phys. Lett. B, 237 (1990), 411-416.doi: 10.1016/0370-2693(90)91198-K. |
[4] |
O. I. Bogoyavlenskiĭ , Integrable cases of rigid-body dynamics and integrable systems on the spheres $S^n$, Izv. Akad. Nauk SSSR Ser. Mat., 49 (1985), 899-915, 1119. |
[5] |
A. V. Bolsinov and B. Jovanović, Noncommutative integrability, moment map and geodesic flows, Ann. Glob. Anal. and Geom., 23 (2003), 305-322.doi: 10.1023/A:1023023300665. |
[6] |
A. V. Borisov and I. S. Mamaev, Chaplygin's ball rolling problem is Hamiltonian, Math. Notes, 70 (2001), 720-723.doi: 10.1023/A:1012995330780. |
[7] |
A. V. Borisov and I. S. Mamaev, "Dynamics of a Rigid Body. Hamiltonian Methods, Integrability, Chaos," Second edition, Institut Komp'yuternykh Issledovaniĭ, Izhevsk, 2005. |
[8] |
A. V. Borisov and I. S. Mamaev, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Reg. Chaotic Dyn., 13 (2008), 443-490.doi: 10.1134/S1560354708050079. |
[9] |
A. V. Borisov, Yu. N. Fedorov and I. S. Mamaev, Chaplygin ball over a fixed sphere: An explicit integration, Reg. Chaotic Dyn., 13 (2008), 557-571.doi: 10.1134/S1560354708060063. |
[10] |
S. A. Chaplygin, "On a Motion of a Heavy Body of Revolution on a Horizontal Plane," Translated from "Collected works. Vol. I. Theoretical Mechanics. Mathematics," 51-57, Gos. Izd. Tekhn.-Teoret. Lit., Moscow, 1948, and Regul. Chaotic Dyn., 7 (2002), 119-130.doi: 10.1070/RD2002v007n02ABEH000199. |
[11] |
S. A. Chaplygin, On a ball's rolling on a horizontal plane, Regul. Chaotic Dyn., 7 (2002), 131-148.doi: 10.1070/RD2002v007n02ABEH000200. |
[12] |
J. J. Duistermaat, Chaplygin’s sphere, preprint, arXiv:math/0409019. |
[13] |
K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, in "The Breath of Symplectic and Poisson Geometry," Progress in Mathematics, 232, Birkhäuser Boston, Boston, MA, (2005), 75-120. |
[14] |
J. C. Eilbeck, V. Z. Énol'skiĭ , V. B. Kuznetsov and A. V. Tsiganov, Linear r-matrix algebra for classical separable systems, J. Phys. A, 27 (1994), 567-578.doi: 10.1088/0305-4470/27/2/038. |
[15] |
G. Falqui and M. Pedroni, Separation of variables for bi-Hamiltonian systems, Math. Phys. Anal. Geom., 6 (2003), 139-179.doi: 10.1023/A:1024080315471. |
[16] |
F. Fassò, The Euler-Poinsot top: A non-commutatively integrable system without global action-angle coordinates, Zeitschrift für Angewandte Mathematik und Physik, 47 (1996), 953-976.doi: 10.1007/BF00920045. |
[17] |
Yu. N. Fedorov, Integration of a generalized problem on the rolling of a Chaplygin ball, in "Geometry, Differential Equations and Mechanics" (Moscow, 1985), Moskov. Gos. Univ., Mekh.-Mat. Fak., Moscow, (1986), 151-155. |
[18] |
C. G. J. Jacobi, Vorlesungen über Dynamik, in "Jacobi's Lectures on Dynamics," given in Königsberg, 1842-1843, published by A. Clebsch, Georg Reimer, Berlin, 1866. |
[19] |
B. Jovanovic, Hamiltonization and integrability of the Chaplygin sphere in $R^n$, J. of Nonlinear Science, 20 (2010), 569-593. |
[20] |
E. G. Gallop, On the rise of a spinning top, Trans. Cambridge Phil. Society, 19 (1904), 356-373. |
[21] |
S. Hochgerner, Chaplygin systems associated to Cartan decompositions of semi-simple Lie groups, Diff. Geom. Appl., 28 (2010), 436-453.doi: 10.1016/j.difgeo.2010.04.003. |
[22] |
E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature," Pitman Monographs and Surveys in Pure and Applied Mathematics, 28, Longman Scientific & Technical, Harlow, John Wiley & Sons, Inc., New York, 1986. |
[23] |
I. V. Komarov and A. V.Tsiganov, On a trajectory isomorphism of the Kowalevski gyrostat and the Clebsch problem, Journal of Physics A, 38 (2005), 2917-2927.doi: 10.1088/0305-4470/38/13/007. |
[24] |
J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Astérisque, 1985, 257-271. |
[25] |
V. V. Kozlov, Realization of nonintegrable constraints in classical mechanics, Dokl. Akad. Nauk SSSR, 272 (1983), 550-554. |
[26] |
V. V. Kozlov, On the integration theory of equations of nonholonomic mechanics, Adv. in Mech., 8 (1985), 85-107. |
[27] |
T. E. Kouloukas and V. G. Papageorgiou, Poisson Yang-Baxter maps with binomial Lax matrices, J. Math. Phys., 52 (2011), 073502 (18 pages). |
[28] |
V. B. Kuznetsov, Quadrics on real Riemannian spaces of constant curvature: Separation of variables and connection with Gaudin magnet, J. Math. Phys., 33 (1992), 3240-3254.doi: 10.1063/1.529542. |
[29] |
A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Diff. Geom., 12 (1977), 253-300. |
[30] |
W. Macke, "Mechanik der Teilchen, Systeme und Kontinua: Ein Lehrbuch der theoretischen Physik," Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1962. |
[31] |
A. P. Markeev, Integrability of a problem on rolling of ball with multiply connected cavity filled by ideal liquid, Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, 21 (1986), 64-65. |
[32] |
C. Morosi and L. Pizzocchero, On the Euler equation: Bi-Hamiltonian structure and integrals in involution, Lett. Math. Phys., 37 (1996), 117-135.doi: 10.1007/BF00416015. |
[33] |
T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization, J. Geometry and Physics, 61 (2011), 1263-1291.doi: 10.1016/j.geomphys.2011.02.015. |
[34] |
A. G. Reyman and M. A. Semenov-Tian-Shansky, Group-theoretical methods in the theory of finite-dimensional integrable systems, in "Current Problems in Mathematics. Fundamental Directions," Vol. 16, (Russian), Dynamical systems, 7, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1987. |
[35] |
D. Schneider, Non-holonomic Euler-Poincaré equations and stability in Chaplygin's sphere, Dyn. Syst., 17 (2002), 87-130.doi: 10.1080/02681110110112852. |
[36] |
J. L. Synge, "Classical Dynamics," 1960 Handbuch der Physik, Bd. III/1, 1-225, Springer, Berlin, 1960. |
[37] |
A. V. Tsiganov, The Stäckel systems and algebraic curves, J. Math. Phys., 40 (1999), 279-298.doi: 10.1063/1.532789. |
[38] |
A. V. Tsiganov, Duality between integrable Stäckel systems, J. Phys. A, 32 (1999), 7965-7982.doi: 10.1088/0305-4470/32/45/311. |
[39] |
A. V. Tsiganov, The Maupertuis principle and canonical transformations of the extended phase space, J. Nonlinear Math. Phys., 8 (2001), 157-182.doi: 10.2991/jnmp.2001.8.1.12. |
[40] |
A. V. Tsiganov, On the Steklov-Lyapunov case of the rigid body motion, Regular and Chaotic Dynamics, 9 (2004), 77-89.doi: 10.1070/RD2004v009n02ABEH000267. |
[41] |
A. V. Tsiganov, Toda chains in the Jacobi method, Teor. Math. Phys., 139 (2004), 636-653.doi: 10.1023/B:TAMP.0000026181.79622.af. |
[42] |
A. V. Tsiganov, A family of the Poisson brackets compatible with the Sklyanin bracket, J. Phys. A, 40 (2007), 4803-4816.doi: 10.1088/1751-8113/40/18/008. |
[43] |
A. V. Tsiganov, On bi-hamiltonian geometry of the Lagrange top, J. Phys. A, 41 (2008), 315212, 12 pp. |
[44] |
A. V. Tsiganov, New variables of separation for particular case of the Kowalevski top, Regular and Chaotic Dynamics, 15 (2010), 659-669.doi: 10.1134/S156035471006002X. |
[45] |
A. V. Tsiganov, On natural Poisson bivectors on the sphere, J. Phys. A, 44 (2011), 105203, 15 pp. |
[46] |
A. V. Tsiganov, On deformations of the canonical Poisson bracket for the nonholonomic Chaplygin and the Borisov–Mamaev–Fedorov systems on zero-level of the area integral I, Rus. J. Nonlin. Dynamics, 7 (2011), 577-599. |
[47] |
I. Vaisman, "Lectures on the Geometry of Poisson Manifolds," Progress in Mathematics, 118, Birkhäuser Verlag, Basel, 1994. |
[48] |
A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys., 23 (1997), 379-394.doi: 10.1016/S0393-0440(97)80011-3. |
[49] |
S. Wojciechowski, Integrable one-particle potentials related to the Neumann systems and the Jacobi problem of geodesic motion on an ellipsoid, Phys. Lett. A, 107 (1985), 106-111.doi: 10.1016/0375-9601(85)90725-X. |