December  2011, 3(4): 389-438. doi: 10.3934/jgm.2011.3.389

Sobolev metrics on shape space of surfaces

1. 

Fakultät f¨ur Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria, Austria

2. 

EdLabs, Harvard University, 44 Brattle Street, Cambridge, MA 02138, United States

Received  September 2010 Revised  August 2011 Published  February 2012

Let $M$ and $N$ be connected manifolds without boundary with $\dim(M) < \dim(N)$, and let $M$ compact. Then shape space in this work is either the manifold of submanifolds of $N$ that are diffeomorphic to $M$, or the orbifold of unparametrized immersions of $M$ in $N$. We investigate the Sobolev Riemannian metrics on shape space: These are induced by metrics of the following form on the space of immersions: $$ G^P_f(h,k) = \int_{M} \overline{g}( P^fh, k) vol (f^*\overline{g})$$ where $\overline{g}$ is some fixed metric on $N$, $f^*\overline{g}$ is the induced metric on $M$, $h,k \in \Gamma(f^*TN)$ are tangent vectors at $f$ to the space of embeddings or immersions, and $P^f$ is a positive, selfadjoint, bijective scalar pseudo differential operator of order $2p$ depending smoothly on $f$. We consider later specifically the operator $P^f=1 + A\Delta^p$, where $\Delta$ is the Bochner-Laplacian on $M$ induced by the metric $f^*\overline{g}$. For these metrics we compute the geodesic equations both on the space of immersions and on shape space, and also the conserved momenta arising from the obvious symmetries. We also show that the geodesic equation is well-posed on spaces of immersions, and also on diffeomorphism groups. We give examples of numerical solutions.
Citation: Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389
References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361. doi: 10.5802/aif.233.

[2]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space, preprint, 2010, arXiv:math/1001.0717.

[3]

Martin Bauer, "Almost Local Metrics on Shape Space of Surfaces,'' Ph.D thesis, University of Vienna, 2010.

[4]

Arthur L. Besse, "Einstein Manifolds,'' Reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.

[5]

V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions, Differential Geom. Appl., 1 (1991), 391-401. doi: 10.1016/0926-2245(91)90015-2.

[6]

Adrian Constantin and Boris Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804. doi: 10.1007/s00014-003-0785-6.

[7]

Jürgen Eichhorn, "Global Analysis on Open Manifolds,'' Nova Science Publishers, Inc., New York, 2007.

[8]

Jürgen Eichhorn and Jan Fricke, The module structure theorem for Sobolev spaces on open manifolds, Math. Nachr., 194 (1998), 35-47. doi: 10.1002/mana.19981940105.

[9]

François Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations, Bull. Transilv. Univ. Braşov Ser. III, 2(51) (2009), 55-58.

[10]

Philipp Harms, "Sobolev Metrics on Shape Space of Surfaces,'' Ph.D thesis, University of Vienna, 2010.

[11]

Shoshichi Kobayashi and Katsumi Nomizu, "Foundations of Differential Geometry," Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996.

[12]

I. Kolář, P. W. Michor and J. Slovák, "Natural Operations in Differential Geometry,'' Springer-Verlag, Berlin, 1993.

[13]

Andreas Kriegl and Peter W. Michor, "The Convenient Setting of Global Analysis,'' Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, RI, 1997.

[14]

A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves, Interfaces Free Bound., 10 (2008), 423-445. doi: 10.4171/IFB/196.

[15]

Peter W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach, in "Phase Space Analysis of Partial Differential Equations," Progr. Nonlinear Differential Equations Appl., 69, Birkhäuser Boston, Boston, MA, (2006), 133-215.

[16]

Peter W. Michor, "Topics in Differential Geometry,'' Graduate Studies in Mathematics, 93, American Mathematical Society, Providence, RI, 2008.

[17]

Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Doc. Math., 10 (2005), 217-245 (electronic).

[18]

Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS), 8 (2006), 1-48.

[19]

Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113. doi: 10.1016/j.acha.2006.07.004.

[20]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,'' Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987.

[21]

Alain Trouvé and Laurent Younes, "Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals," Computer Vision, Vol. 1842, ECCV, 2000.

[22]

Steven Verpoort, "The Geometry of the Second Fundamental Form: Curvature Properties and Variational Aspects,'' Ph.D thesis, Katholieke Universiteit Leuven, 2008.

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25-57.

[24]

Laurent Younes, Computable elastic distances between shapes, SIAM J. Appl. Math., 58 (1998), 565-586 (electronic). doi: 10.1137/S0036139995287685.

show all references

References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble), 16 (1966), 319-361. doi: 10.5802/aif.233.

[2]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space, preprint, 2010, arXiv:math/1001.0717.

[3]

Martin Bauer, "Almost Local Metrics on Shape Space of Surfaces,'' Ph.D thesis, University of Vienna, 2010.

[4]

Arthur L. Besse, "Einstein Manifolds,'' Reprint of the 1987 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008.

[5]

V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions, Differential Geom. Appl., 1 (1991), 391-401. doi: 10.1016/0926-2245(91)90015-2.

[6]

Adrian Constantin and Boris Kolev, Geodesic flow on the diffeomorphism group of the circle, Comment. Math. Helv., 78 (2003), 787-804. doi: 10.1007/s00014-003-0785-6.

[7]

Jürgen Eichhorn, "Global Analysis on Open Manifolds,'' Nova Science Publishers, Inc., New York, 2007.

[8]

Jürgen Eichhorn and Jan Fricke, The module structure theorem for Sobolev spaces on open manifolds, Math. Nachr., 194 (1998), 35-47. doi: 10.1002/mana.19981940105.

[9]

François Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations, Bull. Transilv. Univ. Braşov Ser. III, 2(51) (2009), 55-58.

[10]

Philipp Harms, "Sobolev Metrics on Shape Space of Surfaces,'' Ph.D thesis, University of Vienna, 2010.

[11]

Shoshichi Kobayashi and Katsumi Nomizu, "Foundations of Differential Geometry," Vol. I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1996.

[12]

I. Kolář, P. W. Michor and J. Slovák, "Natural Operations in Differential Geometry,'' Springer-Verlag, Berlin, 1993.

[13]

Andreas Kriegl and Peter W. Michor, "The Convenient Setting of Global Analysis,'' Mathematical Surveys and Monographs, 53, American Mathematical Society, Providence, RI, 1997.

[14]

A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves, Interfaces Free Bound., 10 (2008), 423-445. doi: 10.4171/IFB/196.

[15]

Peter W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach, in "Phase Space Analysis of Partial Differential Equations," Progr. Nonlinear Differential Equations Appl., 69, Birkhäuser Boston, Boston, MA, (2006), 133-215.

[16]

Peter W. Michor, "Topics in Differential Geometry,'' Graduate Studies in Mathematics, 93, American Mathematical Society, Providence, RI, 2008.

[17]

Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Doc. Math., 10 (2005), 217-245 (electronic).

[18]

Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS), 8 (2006), 1-48.

[19]

Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113. doi: 10.1016/j.acha.2006.07.004.

[20]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,'' Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987.

[21]

Alain Trouvé and Laurent Younes, "Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals," Computer Vision, Vol. 1842, ECCV, 2000.

[22]

Steven Verpoort, "The Geometry of the Second Fundamental Form: Curvature Properties and Variational Aspects,'' Ph.D thesis, Katholieke Universiteit Leuven, 2008.

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25-57.

[24]

Laurent Younes, Computable elastic distances between shapes, SIAM J. Appl. Math., 58 (1998), 565-586 (electronic). doi: 10.1137/S0036139995287685.

[1]

Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078

[2]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[3]

Huy Tuan Nguyen, Nguyen Anh Tuan, Chao Yang. Global well-posedness for fractional Sobolev-Galpern type equations. Discrete and Continuous Dynamical Systems, 2022, 42 (6) : 2637-2665. doi: 10.3934/dcds.2021206

[4]

Alexander V. Rezounenko, Petr Zagalak. Non-local PDEs with discrete state-dependent delays: Well-posedness in a metric space. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 819-835. doi: 10.3934/dcds.2013.33.819

[5]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure and Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[6]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic and Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[7]

Aiting Le, Chenyin Qian. Smoothing effect and well-posedness for 2D Boussinesq equations in critical Sobolev space. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022057

[8]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[9]

Luiz Gustavo Farah. Local solutions in Sobolev spaces and unconditional well-posedness for the generalized Boussinesq equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1521-1539. doi: 10.3934/cpaa.2009.8.1521

[10]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure and Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[11]

Wei Yan, Yimin Zhang, Yongsheng Li, Jinqiao Duan. Sharp well-posedness of the Cauchy problem for the rotation-modified Kadomtsev-Petviashvili equation in anisotropic Sobolev spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5825-5849. doi: 10.3934/dcds.2021097

[12]

Baoyan Sun, Kung-Chien Wu. Global well-posedness and exponential stability for the fermion equation in weighted Sobolev spaces. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2537-2562. doi: 10.3934/dcdsb.2021147

[13]

P. Blue, J. Colliander. Global well-posedness in Sobolev space implies global existence for weighted $L^2$ initial data for $L^2$-critical NLS. Communications on Pure and Applied Analysis, 2006, 5 (4) : 691-708. doi: 10.3934/cpaa.2006.5.691

[14]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[15]

Hartmut Pecher. Corrigendum of "Local well-posedness for the nonlinear Dirac equation in two space dimensions". Communications on Pure and Applied Analysis, 2015, 14 (2) : 737-742. doi: 10.3934/cpaa.2015.14.737

[16]

Zhaohi Huo, Yueling Jia, Qiaoxin Li. Global well-posedness for the 3D Zakharov-Kuznetsov equation in energy space $H^1$. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1797-1851. doi: 10.3934/dcdss.2016075

[17]

Mohamad Darwich. Local and global well-posedness in the energy space for the dissipative Zakharov-Kuznetsov equation in 3D. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3715-3724. doi: 10.3934/dcdsb.2020087

[18]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[19]

Lin Shen, Shu Wang, Yongxin Wang. The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28 (2) : 691-719. doi: 10.3934/era.2020036

[20]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (116)
  • HTML views (0)
  • Cited by (47)

Other articles
by authors

[Back to Top]