December  2011, 3(4): 389-438. doi: 10.3934/jgm.2011.3.389

Sobolev metrics on shape space of surfaces

1. 

Fakultät f¨ur Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria, Austria

2. 

EdLabs, Harvard University, 44 Brattle Street, Cambridge, MA 02138, United States

Received  September 2010 Revised  August 2011 Published  February 2012

Let $M$ and $N$ be connected manifolds without boundary with $\dim(M) < \dim(N)$, and let $M$ compact. Then shape space in this work is either the manifold of submanifolds of $N$ that are diffeomorphic to $M$, or the orbifold of unparametrized immersions of $M$ in $N$. We investigate the Sobolev Riemannian metrics on shape space: These are induced by metrics of the following form on the space of immersions: $$ G^P_f(h,k) = \int_{M} \overline{g}( P^fh, k) vol (f^*\overline{g})$$ where $\overline{g}$ is some fixed metric on $N$, $f^*\overline{g}$ is the induced metric on $M$, $h,k \in \Gamma(f^*TN)$ are tangent vectors at $f$ to the space of embeddings or immersions, and $P^f$ is a positive, selfadjoint, bijective scalar pseudo differential operator of order $2p$ depending smoothly on $f$. We consider later specifically the operator $P^f=1 + A\Delta^p$, where $\Delta$ is the Bochner-Laplacian on $M$ induced by the metric $f^*\overline{g}$. For these metrics we compute the geodesic equations both on the space of immersions and on shape space, and also the conserved momenta arising from the obvious symmetries. We also show that the geodesic equation is well-posed on spaces of immersions, and also on diffeomorphism groups. We give examples of numerical solutions.
Citation: Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389
References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, preprint, (2010).   Google Scholar

[3]

Martin Bauer, "Almost Local Metrics on Shape Space of Surfaces,'', Ph.D thesis, (2010).   Google Scholar

[4]

Arthur L. Besse, "Einstein Manifolds,'', Reprint of the 1987 edition, (1987).   Google Scholar

[5]

V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions,, Differential Geom. Appl., 1 (1991), 391.  doi: 10.1016/0926-2245(91)90015-2.  Google Scholar

[6]

Adrian Constantin and Boris Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787.  doi: 10.1007/s00014-003-0785-6.  Google Scholar

[7]

Jürgen Eichhorn, "Global Analysis on Open Manifolds,'', Nova Science Publishers, (2007).   Google Scholar

[8]

Jürgen Eichhorn and Jan Fricke, The module structure theorem for Sobolev spaces on open manifolds,, Math. Nachr., 194 (1998), 35.  doi: 10.1002/mana.19981940105.  Google Scholar

[9]

François Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations,, Bull. Transilv. Univ. Braşov Ser. III, 2(51) (2009), 55.   Google Scholar

[10]

Philipp Harms, "Sobolev Metrics on Shape Space of Surfaces,'', Ph.D thesis, (2010).   Google Scholar

[11]

Shoshichi Kobayashi and Katsumi Nomizu, "Foundations of Differential Geometry," Vol. I,, Wiley Classics Library, (1996).   Google Scholar

[12]

I. Kolář, P. W. Michor and J. Slovák, "Natural Operations in Differential Geometry,'', Springer-Verlag, (1993).   Google Scholar

[13]

Andreas Kriegl and Peter W. Michor, "The Convenient Setting of Global Analysis,'', Mathematical Surveys and Monographs, 53 (1997).   Google Scholar

[14]

A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves,, Interfaces Free Bound., 10 (2008), 423.  doi: 10.4171/IFB/196.  Google Scholar

[15]

Peter W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach,, in, 69 (2006), 133.   Google Scholar

[16]

Peter W. Michor, "Topics in Differential Geometry,'', Graduate Studies in Mathematics, 93 (2008).   Google Scholar

[17]

Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.   Google Scholar

[18]

Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.   Google Scholar

[19]

Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[20]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,'', Springer Series in Soviet Mathematics, (1987).   Google Scholar

[21]

Alain Trouvé and Laurent Younes, "Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals,", Computer Vision, (1842).   Google Scholar

[22]

Steven Verpoort, "The Geometry of the Second Fundamental Form: Curvature Properties and Variational Aspects,'', Ph.D thesis, (2008).   Google Scholar

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25.   Google Scholar

[24]

Laurent Younes, Computable elastic distances between shapes,, SIAM J. Appl. Math., 58 (1998), 565.  doi: 10.1137/S0036139995287685.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, preprint, (2010).   Google Scholar

[3]

Martin Bauer, "Almost Local Metrics on Shape Space of Surfaces,'', Ph.D thesis, (2010).   Google Scholar

[4]

Arthur L. Besse, "Einstein Manifolds,'', Reprint of the 1987 edition, (1987).   Google Scholar

[5]

V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions,, Differential Geom. Appl., 1 (1991), 391.  doi: 10.1016/0926-2245(91)90015-2.  Google Scholar

[6]

Adrian Constantin and Boris Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787.  doi: 10.1007/s00014-003-0785-6.  Google Scholar

[7]

Jürgen Eichhorn, "Global Analysis on Open Manifolds,'', Nova Science Publishers, (2007).   Google Scholar

[8]

Jürgen Eichhorn and Jan Fricke, The module structure theorem for Sobolev spaces on open manifolds,, Math. Nachr., 194 (1998), 35.  doi: 10.1002/mana.19981940105.  Google Scholar

[9]

François Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations,, Bull. Transilv. Univ. Braşov Ser. III, 2(51) (2009), 55.   Google Scholar

[10]

Philipp Harms, "Sobolev Metrics on Shape Space of Surfaces,'', Ph.D thesis, (2010).   Google Scholar

[11]

Shoshichi Kobayashi and Katsumi Nomizu, "Foundations of Differential Geometry," Vol. I,, Wiley Classics Library, (1996).   Google Scholar

[12]

I. Kolář, P. W. Michor and J. Slovák, "Natural Operations in Differential Geometry,'', Springer-Verlag, (1993).   Google Scholar

[13]

Andreas Kriegl and Peter W. Michor, "The Convenient Setting of Global Analysis,'', Mathematical Surveys and Monographs, 53 (1997).   Google Scholar

[14]

A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves,, Interfaces Free Bound., 10 (2008), 423.  doi: 10.4171/IFB/196.  Google Scholar

[15]

Peter W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach,, in, 69 (2006), 133.   Google Scholar

[16]

Peter W. Michor, "Topics in Differential Geometry,'', Graduate Studies in Mathematics, 93 (2008).   Google Scholar

[17]

Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.   Google Scholar

[18]

Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.   Google Scholar

[19]

Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[20]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,'', Springer Series in Soviet Mathematics, (1987).   Google Scholar

[21]

Alain Trouvé and Laurent Younes, "Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals,", Computer Vision, (1842).   Google Scholar

[22]

Steven Verpoort, "The Geometry of the Second Fundamental Form: Curvature Properties and Variational Aspects,'', Ph.D thesis, (2008).   Google Scholar

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25.   Google Scholar

[24]

Laurent Younes, Computable elastic distances between shapes,, SIAM J. Appl. Math., 58 (1998), 565.  doi: 10.1137/S0036139995287685.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[8]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[11]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[12]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (39)

Other articles
by authors

[Back to Top]