December  2011, 3(4): 389-438. doi: 10.3934/jgm.2011.3.389

Sobolev metrics on shape space of surfaces

1. 

Fakultät f¨ur Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria, Austria

2. 

EdLabs, Harvard University, 44 Brattle Street, Cambridge, MA 02138, United States

Received  September 2010 Revised  August 2011 Published  February 2012

Let $M$ and $N$ be connected manifolds without boundary with $\dim(M) < \dim(N)$, and let $M$ compact. Then shape space in this work is either the manifold of submanifolds of $N$ that are diffeomorphic to $M$, or the orbifold of unparametrized immersions of $M$ in $N$. We investigate the Sobolev Riemannian metrics on shape space: These are induced by metrics of the following form on the space of immersions: $$ G^P_f(h,k) = \int_{M} \overline{g}( P^fh, k) vol (f^*\overline{g})$$ where $\overline{g}$ is some fixed metric on $N$, $f^*\overline{g}$ is the induced metric on $M$, $h,k \in \Gamma(f^*TN)$ are tangent vectors at $f$ to the space of embeddings or immersions, and $P^f$ is a positive, selfadjoint, bijective scalar pseudo differential operator of order $2p$ depending smoothly on $f$. We consider later specifically the operator $P^f=1 + A\Delta^p$, where $\Delta$ is the Bochner-Laplacian on $M$ induced by the metric $f^*\overline{g}$. For these metrics we compute the geodesic equations both on the space of immersions and on shape space, and also the conserved momenta arising from the obvious symmetries. We also show that the geodesic equation is well-posed on spaces of immersions, and also on diffeomorphism groups. We give examples of numerical solutions.
Citation: Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389
References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, preprint, (2010).   Google Scholar

[3]

Martin Bauer, "Almost Local Metrics on Shape Space of Surfaces,'', Ph.D thesis, (2010).   Google Scholar

[4]

Arthur L. Besse, "Einstein Manifolds,'', Reprint of the 1987 edition, (1987).   Google Scholar

[5]

V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions,, Differential Geom. Appl., 1 (1991), 391.  doi: 10.1016/0926-2245(91)90015-2.  Google Scholar

[6]

Adrian Constantin and Boris Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787.  doi: 10.1007/s00014-003-0785-6.  Google Scholar

[7]

Jürgen Eichhorn, "Global Analysis on Open Manifolds,'', Nova Science Publishers, (2007).   Google Scholar

[8]

Jürgen Eichhorn and Jan Fricke, The module structure theorem for Sobolev spaces on open manifolds,, Math. Nachr., 194 (1998), 35.  doi: 10.1002/mana.19981940105.  Google Scholar

[9]

François Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations,, Bull. Transilv. Univ. Braşov Ser. III, 2(51) (2009), 55.   Google Scholar

[10]

Philipp Harms, "Sobolev Metrics on Shape Space of Surfaces,'', Ph.D thesis, (2010).   Google Scholar

[11]

Shoshichi Kobayashi and Katsumi Nomizu, "Foundations of Differential Geometry," Vol. I,, Wiley Classics Library, (1996).   Google Scholar

[12]

I. Kolář, P. W. Michor and J. Slovák, "Natural Operations in Differential Geometry,'', Springer-Verlag, (1993).   Google Scholar

[13]

Andreas Kriegl and Peter W. Michor, "The Convenient Setting of Global Analysis,'', Mathematical Surveys and Monographs, 53 (1997).   Google Scholar

[14]

A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves,, Interfaces Free Bound., 10 (2008), 423.  doi: 10.4171/IFB/196.  Google Scholar

[15]

Peter W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach,, in, 69 (2006), 133.   Google Scholar

[16]

Peter W. Michor, "Topics in Differential Geometry,'', Graduate Studies in Mathematics, 93 (2008).   Google Scholar

[17]

Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.   Google Scholar

[18]

Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.   Google Scholar

[19]

Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[20]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,'', Springer Series in Soviet Mathematics, (1987).   Google Scholar

[21]

Alain Trouvé and Laurent Younes, "Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals,", Computer Vision, (1842).   Google Scholar

[22]

Steven Verpoort, "The Geometry of the Second Fundamental Form: Curvature Properties and Variational Aspects,'', Ph.D thesis, (2008).   Google Scholar

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25.   Google Scholar

[24]

Laurent Younes, Computable elastic distances between shapes,, SIAM J. Appl. Math., 58 (1998), 565.  doi: 10.1137/S0036139995287685.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Sur la géometrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, preprint, (2010).   Google Scholar

[3]

Martin Bauer, "Almost Local Metrics on Shape Space of Surfaces,'', Ph.D thesis, (2010).   Google Scholar

[4]

Arthur L. Besse, "Einstein Manifolds,'', Reprint of the 1987 edition, (1987).   Google Scholar

[5]

V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions,, Differential Geom. Appl., 1 (1991), 391.  doi: 10.1016/0926-2245(91)90015-2.  Google Scholar

[6]

Adrian Constantin and Boris Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787.  doi: 10.1007/s00014-003-0785-6.  Google Scholar

[7]

Jürgen Eichhorn, "Global Analysis on Open Manifolds,'', Nova Science Publishers, (2007).   Google Scholar

[8]

Jürgen Eichhorn and Jan Fricke, The module structure theorem for Sobolev spaces on open manifolds,, Math. Nachr., 194 (1998), 35.  doi: 10.1002/mana.19981940105.  Google Scholar

[9]

François Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations,, Bull. Transilv. Univ. Braşov Ser. III, 2(51) (2009), 55.   Google Scholar

[10]

Philipp Harms, "Sobolev Metrics on Shape Space of Surfaces,'', Ph.D thesis, (2010).   Google Scholar

[11]

Shoshichi Kobayashi and Katsumi Nomizu, "Foundations of Differential Geometry," Vol. I,, Wiley Classics Library, (1996).   Google Scholar

[12]

I. Kolář, P. W. Michor and J. Slovák, "Natural Operations in Differential Geometry,'', Springer-Verlag, (1993).   Google Scholar

[13]

Andreas Kriegl and Peter W. Michor, "The Convenient Setting of Global Analysis,'', Mathematical Surveys and Monographs, 53 (1997).   Google Scholar

[14]

A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves,, Interfaces Free Bound., 10 (2008), 423.  doi: 10.4171/IFB/196.  Google Scholar

[15]

Peter W. Michor, Some geometric evolution equations arising as geodesic equations on groups of diffeomorphisms including the Hamiltonian approach,, in, 69 (2006), 133.   Google Scholar

[16]

Peter W. Michor, "Topics in Differential Geometry,'', Graduate Studies in Mathematics, 93 (2008).   Google Scholar

[17]

Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.   Google Scholar

[18]

Peter W. Michor and David Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.   Google Scholar

[19]

Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[20]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,'', Springer Series in Soviet Mathematics, (1987).   Google Scholar

[21]

Alain Trouvé and Laurent Younes, "Diffeomorphic Matching Problems in One Dimension: Designing and Minimizing Matching Functionals,", Computer Vision, (1842).   Google Scholar

[22]

Steven Verpoort, "The Geometry of the Second Fundamental Form: Curvature Properties and Variational Aspects,'', Ph.D thesis, (2008).   Google Scholar

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25.   Google Scholar

[24]

Laurent Younes, Computable elastic distances between shapes,, SIAM J. Appl. Math., 58 (1998), 565.  doi: 10.1137/S0036139995287685.  Google Scholar

[1]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[2]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[3]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

[4]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[5]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[6]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[7]

Wei Wang, Degen Huang, Haitao Yu. Word sense disambiguation based on stretchable matching of the semantic template. Mathematical Foundations of Computing, 2021, 4 (1) : 1-13. doi: 10.3934/mfc.2020022

[8]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[9]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[10]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[11]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[12]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[13]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[14]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[15]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[16]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[17]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[18]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[19]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[20]

Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (75)
  • HTML views (0)
  • Cited by (47)

Other articles
by authors

[Back to Top]