December  2011, 3(4): 507-515. doi: 10.3934/jgm.2011.3.507

A note on the Wehrheim-Woodward category

1. 

Department of Mathematics, University of California, Berkeley, CA 94720, United States

Received  December 2010 Revised  March 2011 Published  February 2012

Wehrheim and Woodward have shown how to embed all the canonical relations between symplectic manifolds into a category in which the composition is the usual one when transversality and embedding assumptions are satisfied. A morphism in their category is an equivalence class of composable sequences of canonical relations, with composition given by concatenation. In this note, we show that every such morphism is represented by a sequence consisting of just two relations, one of them a reduction and the other a coreduction.
Citation: Alan Weinstein. A note on the Wehrheim-Woodward category. Journal of Geometric Mechanics, 2011, 3 (4) : 507-515. doi: 10.3934/jgm.2011.3.507
References:
[1]

S. Benenti and V. M. Tulczyjew, Relazioni lineari binarie tra spazi vettoriali di dimensione finita,, Memorie Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (5), 3 (1979), 67.   Google Scholar

[2]

M. M. Cohen, "A Course in Simple-Homotopy Theory,'', Graduate Texts in Mathematics, 10 (1973).   Google Scholar

[3]

J. Rognes, Lecture notes on algebraic k-theory,, April 29, (2010).   Google Scholar

[4]

K. Wehrheim and C. T. Woodward, Functoriality for Lagrangian correspondences in Floer theory,, Quantum Topology, 1 (2010), 129.  doi: 10.4171/QT/4.  Google Scholar

show all references

References:
[1]

S. Benenti and V. M. Tulczyjew, Relazioni lineari binarie tra spazi vettoriali di dimensione finita,, Memorie Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (5), 3 (1979), 67.   Google Scholar

[2]

M. M. Cohen, "A Course in Simple-Homotopy Theory,'', Graduate Texts in Mathematics, 10 (1973).   Google Scholar

[3]

J. Rognes, Lecture notes on algebraic k-theory,, April 29, (2010).   Google Scholar

[4]

K. Wehrheim and C. T. Woodward, Functoriality for Lagrangian correspondences in Floer theory,, Quantum Topology, 1 (2010), 129.  doi: 10.4171/QT/4.  Google Scholar

[1]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

[2]

Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62.

[3]

Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983

[4]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[5]

Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024

[6]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]