Citation: |
[1] |
R. Abraham, J. E. Marsden and T. Ratiu, "Manifolds, Tensor Analysis, and Applications," volume 75 of "Applied Mathematical Sciences," Springer-Verlag, New York, second edition, 1988. |
[2] |
V. I. Arnold, "Mathematical Methods of Classical Mechanics," volume 60 of "Graduate Texts in Mathematics," Springer-Verlag, New York, second edition, 1989, Translated from the Russian by K. Vogtmann and A. Weinstein. |
[3] |
G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms, J. Statist. Phys., 74 (1994), 1117-1143.doi: 10.1007/BF02188219. |
[4] |
M. P. Calvo, A. Murua and J. M. Sanz-Serna, Modified equations for ODEs, In "Chaotic Numerics (Geelong, 1993)," volume 172 of "Contemp. Math.," pages 63-74, Amer. Math. Soc., Providence, RI, 1994. |
[5] |
E. Cartan, Les groupes de transformations continus, infinis, simples, Ann. Sci. École Norm. Sup. (3), 26 (1909), 93-161. |
[6] |
D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid, Ann. of Math. (2), 92 (1970), 102-163.doi: 10.2307/1970699. |
[7] |
O. Gonzalez, D. J. Higham and A. M. Stuart, Qualitative properties of modified equations, IMA J. Numer. Anal., 19 (1999), 169-190.doi: 10.1093/imanum/19.2.169. |
[8] |
E. Hairer, Global modified Hamiltonian for constrained symplectic integrators, Numer. Math., 95 (2003), 325-336.doi: 10.1007/s00211-002-0428-7. |
[9] |
E. Hairer and C. Lubich, The life-span of backward error analysis for numerical integrators, Numer. Math., 76 (1997), 441-462.doi: 10.1007/s002110050271. |
[10] |
E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration," volume 31 of "Springer Series in Computational Mathematics," Springer-Verlag, Berlin, 2002. Structure-preserving algorithms for ordinary differential equations. |
[11] |
E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I," volume 8 of "Springer Series in Computational Mathematics," Springer-Verlag, Berlin, second edition, 1993. Nonstiff problems. |
[12] |
A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, In "Acta Numerica, 2000," volume 9 of "Acta Numer.," pages 215-365, Cambridge Univ. Press, Cambridge, 2000. |
[13] |
J. M. Lee, "Introduction to Smooth Manifolds," volume 218 of "Graduate Texts in Mathematics," Springer-Verlag, New York, 2003. |
[14] |
R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), 341-434.doi: 10.1017/S0962492902000053. |
[15] |
H. Omori, "Infinite-dimensional Lie Groups," volume 158 of "Translations of Mathematical Monographs," American Mathematical Society, Providence, RI, 1997, Translated from the 1979 Japanese original and revised by the author. |
[16] |
R. S. Palais, "Foundations of Global Non-linear Analysis," W. A. Benjamin, Inc., New York-Amsterdam, 1968. |
[17] |
S. Reich, "Numerical Integration of the Generatized Euler Equations," Technical report, Vancouver, BC, Canada, Canada, 1993. |
[18] |
S. Reich, On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems, Numer. Math., 76 (1997), 231-247.doi: 10.1007/s002110050261. |
[19] |
S. Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal., 36 (1999), 1549-1570 (electronic).doi: 10.1137/S0036142997329797. |
[20] |
R. Schmid, Infinite-dimensional Lie groups with applications to mathematical physics, J. Geom. Symmetry Phys., 1 (2004), 54-120. |