Citation: |
[1] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition, revised and enlarged, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. |
[2] |
Cédric M. Campos, "Geometric Methods in Classical Field Theory and Continuous Media," Ph.D thesis, Universidad Autónoma de Madrid, 2010. |
[3] |
C. M. Campos, M. de León, D. Martín de Diego and J. Vankerschaver, Unambiguous formalism for higher order Lagrangian field theories, J. Phys. A, 42 (2009), 475207, 24 pp. |
[4] |
F. Cantrijn, A. Ibort and M. de León, On the geometry of multisymplectic manifolds, J. Austral. Math. Soc. Ser. A, 66 (1999), 303-330.doi: 10.1017/S1446788700036636. |
[5] |
J. F. Cariñena, M. Crampin and A. Ibort, On the multisymplectic formalism for first order field theories, Differential Geom. Appl., 1 (1991), 345-374. |
[6] |
A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories, J. Math. Phys., 48 (2007), 112901, 30 pp. |
[7] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries, J. Phys. A, 32 (1999), 8461-8484.doi: 10.1088/0305-4470/32/48/309. |
[8] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories, J. Math. Phys., 41 (2000), 7402-7444.doi: 10.1063/1.1308075. |
[9] |
A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, On the multimomentum bundles and the Legendre maps in field theories, Rep. Math. Phys., 45 (2000), 85-105.doi: 10.1016/S0034-4877(00)88873-4. |
[10] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory," World Scientific Publishing Co., Inc., River Edge, NJ, 1997. |
[11] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations. I. Covariant Hamiltonian formalism, in "Mechanics, Analysis and Geometry: 200 years after Lagrange," North-Holland Delta Ser., North-Holland, Amsterdam, (1991), 203-235. |
[12] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations. II. Space $+$ time decomposition, Differential Geom. Appl., 1 (1991), 375-390. |
[13] |
M. J. Gotay, J. E. Marsden, J. A. Isenberg, R. Montgomery, J. Śniatycki and P. B. Yasskin, "Momentum Maps and Classical Fields. Part I: Covariant Field Theory," preprint, 2004, arXiv:physics/9801019. |
[14] |
M. J. Gotay, J. E. Marsden, J. A. Isenberg, R. Montgomery, J. Śniatycki and P. B. Yasskin, "Momentum Maps and Classical Fields. Part II: Canonical Analysis of Field Theories," preprint, 2004 arXiv:math-ph/0411032. |
[15] |
K. Grabowska, Lagrangian and Hamiltonian formalism in field theory: A simple model, J. Geom. Mech., 2 (2010), 375-395.doi: 10.3934/jgm.2010.2.375. |
[16] |
K. Grabowska, The Tulczyjew triple for classical fields, preprint, arXiv:1109.2533. |
[17] |
K. Grabowska, J. Grabowski and P. Urbański, AV-differential geometry: Euler-Lagrange equations, J. Geom. Phys., 57 (2007), 1984-1998.doi: 10.1016/j.geomphys.2007.04.003. |
[18] |
E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds, J. Phys. A, 43 (2010), 505201, 23 pp. |
[19] |
E. Guzmán, J. C. Marrero and J. Vankerschaver, Lagrangian submanifolds and classical field theories of first order on Lie algebroids, work in progress. |
[20] |
D. Iglesias, J. C. Marrero, E. Padrón and D. Sosa, Lagrangian submanifolds and dynamics on Lie affgebroids, Rep. Math. Phys., 57 (2006), 385-436.doi: 10.1016/S0034-4877(06)80029-7. |
[21] |
J. Kijowski and W. M. Tulczyjew, "A Symplectic Framework for Field Theories," Lecture Notes in Physics, 107, Springer-Verlag, Berlin-New York, 1979. |
[22] |
I. Kolář and M. Modugno, Natural maps on the iterated jet prolongation of a fibred manifold, Ann. Mat. Pura Appl. (4), 158 (1991), 151-165. |
[23] |
M. de León and E. A. Lacomba, Lagrangian submanifolds and higher-order mechanical systems, J. Phys. A, 22 (1989), 3809-3820.doi: 10.1088/0305-4470/22/18/019. |
[24] |
M. de León, E. A. Lacomba and P. R. Rodrigues, Special presymplectic manifolds, Lagrangian submanifolds and the Lagrangian-Hamiltonian systems on jet bundles, in "Proceedings of the First 'Dr. Antonio A. R. Monteiro' Congress on Mathematics" (Spanish) (Bahía Blanca, 1991), Univ. Nac. del Sur, Bahía Blanca, (1991), 103-122. |
[25] |
M. de León, J. Marin-Solano and J. C. Marrero, A geometrical approach to classical field theories: A constraint algorithm for singular theories, in "New Developments in Differential Geometry" (Debrecen, 1994), Math. Appl., 350, Kluwer Acad. Publ., Dordrecht, (1996), 291-312. |
[26] |
M. de León, D. Martín de Diego and A. Santamaría-Merino, Tulczyjew triples and Lagrangian submanifolds in classical field theories, Appl. Diff. Geom. Mech., (2003), 21-47. |
[27] |
M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds, J. Math. Phys., 34 (1993), 622-644.doi: 10.1063/1.530264. |
[28] |
M. de León and P. R. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics," North-Holland Mathematics Studies, 158, North-Holland Publishing Co., Amsterdam, 1989. |
[29] |
M. Modugno, Jet involution and prolongations of connections, Časopis Pěst. Mat., 114 (1989), 356-365. |
[30] |
N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories, SIGMA Symmetry Integrability Geom. Methods Appl., 5 (2009), Paper 100, 25 pp. |
[31] |
N. Román-Roy, Á. M. Rey, M. Salgado and S. Vilariño, $k$-cosymplectic classical field theories: Tulczyjew, Skinner-Rusk and Lie-algebroid formulations, preprint, arXiv:math-ph/0602038. |
[32] |
N. Román-Roy, Á. M. Rey, M. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories, J. Geom. Mech., 3 (2011), 113-137. |
[33] |
D. J. Saunders, "The Geometry of Jet Bundles," London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989. |
[34] |
W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A15-A18. |
[35] |
W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A675-A678. |
[36] |
W. M. Tulczyjew, A symplectic framework of linear field theories, Ann. Mat. Pura Appl. (4), 130 (1982), 177-195.doi: 10.1007/BF01761494. |