\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds

Abstract Related Papers Cited by
  • A description of classical field theories of first order in terms of Lagrangian submanifolds of premultisymplectic manifolds is presented. For this purpose, a Tulczyjew's triple associated with a fibration is discussed. The triple is adapted to the extended Hamiltonian formalism. Using this triple, we prove that Euler-Lagrange and Hamilton-De Donder-Weyl equations are the local equations defining Lagrangian submanifolds of a premultisymplectic manifold.
    Mathematics Subject Classification: Primary: 70S05; Secondary: 70H03, 70H05, 53D12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition, revised and enlarged, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978.

    [2]

    Cédric M. Campos, "Geometric Methods in Classical Field Theory and Continuous Media," Ph.D thesis, Universidad Autónoma de Madrid, 2010.

    [3]

    C. M. Campos, M. de León, D. Martín de Diego and J. Vankerschaver, Unambiguous formalism for higher order Lagrangian field theories, J. Phys. A, 42 (2009), 475207, 24 pp.

    [4]

    F. Cantrijn, A. Ibort and M. de León, On the geometry of multisymplectic manifolds, J. Austral. Math. Soc. Ser. A, 66 (1999), 303-330.doi: 10.1017/S1446788700036636.

    [5]

    J. F. Cariñena, M. Crampin and A. Ibort, On the multisymplectic formalism for first order field theories, Differential Geom. Appl., 1 (1991), 345-374.

    [6]

    A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories, J. Math. Phys., 48 (2007), 112901, 30 pp.

    [7]

    A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries, J. Phys. A, 32 (1999), 8461-8484.doi: 10.1088/0305-4470/32/48/309.

    [8]

    A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories, J. Math. Phys., 41 (2000), 7402-7444.doi: 10.1063/1.1308075.

    [9]

    A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, On the multimomentum bundles and the Legendre maps in field theories, Rep. Math. Phys., 45 (2000), 85-105.doi: 10.1016/S0034-4877(00)88873-4.

    [10]

    G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory," World Scientific Publishing Co., Inc., River Edge, NJ, 1997.

    [11]

    M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations. I. Covariant Hamiltonian formalism, in "Mechanics, Analysis and Geometry: 200 years after Lagrange," North-Holland Delta Ser., North-Holland, Amsterdam, (1991), 203-235.

    [12]

    M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations. II. Space $+$ time decomposition, Differential Geom. Appl., 1 (1991), 375-390.

    [13]

    M. J. Gotay, J. E. Marsden, J. A. Isenberg, R. Montgomery, J. Śniatycki and P. B. Yasskin, "Momentum Maps and Classical Fields. Part I: Covariant Field Theory," preprint, 2004, arXiv:physics/9801019.

    [14]

    M. J. Gotay, J. E. Marsden, J. A. Isenberg, R. Montgomery, J. Śniatycki and P. B. Yasskin, "Momentum Maps and Classical Fields. Part II: Canonical Analysis of Field Theories," preprint, 2004 arXiv:math-ph/0411032.

    [15]

    K. Grabowska, Lagrangian and Hamiltonian formalism in field theory: A simple model, J. Geom. Mech., 2 (2010), 375-395.doi: 10.3934/jgm.2010.2.375.

    [16]

    K. GrabowskaThe Tulczyjew triple for classical fields, preprint, arXiv:1109.2533.

    [17]

    K. Grabowska, J. Grabowski and P. Urbański, AV-differential geometry: Euler-Lagrange equations, J. Geom. Phys., 57 (2007), 1984-1998.doi: 10.1016/j.geomphys.2007.04.003.

    [18]

    E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds, J. Phys. A, 43 (2010), 505201, 23 pp.

    [19]

    E. Guzmán, J. C. Marrero and J. VankerschaverLagrangian submanifolds and classical field theories of first order on Lie algebroids, work in progress.

    [20]

    D. Iglesias, J. C. Marrero, E. Padrón and D. Sosa, Lagrangian submanifolds and dynamics on Lie affgebroids, Rep. Math. Phys., 57 (2006), 385-436.doi: 10.1016/S0034-4877(06)80029-7.

    [21]

    J. Kijowski and W. M. Tulczyjew, "A Symplectic Framework for Field Theories," Lecture Notes in Physics, 107, Springer-Verlag, Berlin-New York, 1979.

    [22]

    I. Kolář and M. Modugno, Natural maps on the iterated jet prolongation of a fibred manifold, Ann. Mat. Pura Appl. (4), 158 (1991), 151-165.

    [23]

    M. de León and E. A. Lacomba, Lagrangian submanifolds and higher-order mechanical systems, J. Phys. A, 22 (1989), 3809-3820.doi: 10.1088/0305-4470/22/18/019.

    [24]

    M. de León, E. A. Lacomba and P. R. Rodrigues, Special presymplectic manifolds, Lagrangian submanifolds and the Lagrangian-Hamiltonian systems on jet bundles, in "Proceedings of the First 'Dr. Antonio A. R. Monteiro' Congress on Mathematics" (Spanish) (Bahía Blanca, 1991), Univ. Nac. del Sur, Bahía Blanca, (1991), 103-122.

    [25]

    M. de León, J. Marin-Solano and J. C. Marrero, A geometrical approach to classical field theories: A constraint algorithm for singular theories, in "New Developments in Differential Geometry" (Debrecen, 1994), Math. Appl., 350, Kluwer Acad. Publ., Dordrecht, (1996), 291-312.

    [26]

    M. de León, D. Martín de Diego and A. Santamaría-Merino, Tulczyjew triples and Lagrangian submanifolds in classical field theories, Appl. Diff. Geom. Mech., (2003), 21-47.

    [27]

    M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds, J. Math. Phys., 34 (1993), 622-644.doi: 10.1063/1.530264.

    [28]

    M. de León and P. R. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics," North-Holland Mathematics Studies, 158, North-Holland Publishing Co., Amsterdam, 1989.

    [29]

    M. Modugno, Jet involution and prolongations of connections, Časopis Pěst. Mat., 114 (1989), 356-365.

    [30]

    N. Román-Roy, Multisymplectic Lagrangian and Hamiltonian formalisms of classical field theories, SIGMA Symmetry Integrability Geom. Methods Appl., 5 (2009), Paper 100, 25 pp.

    [31]

    N. Román-Roy, Á. M. Rey, M. Salgado and S. Vilariño$k$-cosymplectic classical field theories: Tulczyjew, Skinner-Rusk and Lie-algebroid formulations, preprint, arXiv:math-ph/0602038.

    [32]

    N. Román-Roy, Á. M. Rey, M. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories, J. Geom. Mech., 3 (2011), 113-137.

    [33]

    D. J. Saunders, "The Geometry of Jet Bundles," London Mathematical Society Lecture Note Series, 142, Cambridge University Press, Cambridge, 1989.

    [34]

    W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A15-A18.

    [35]

    W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), A675-A678.

    [36]

    W. M. Tulczyjew, A symplectic framework of linear field theories, Ann. Mat. Pura Appl. (4), 130 (1982), 177-195.doi: 10.1007/BF01761494.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(373) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return