June  2012, 4(2): 129-136. doi: 10.3934/jgm.2012.4.129

Linear weakly Noetherian constants of motion are horizontal gauge momenta

1. 

Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova

2. 

Università di Verona, Dipartimento di Informatica, Cà Vignal 2, Strada Le Grazie 15, 37134 Verona

Received  October 2010 Revised  March 2011 Published  August 2012

noindent The notion of gauge momenta is a generalization of the momentum map which is relevant for nonholonomic systems with symmetry. Weakly Noetherian functions are functions which are constants of motion of all 'natural' nonholonomic systems with a given kinetic energy and any $G$-invariant potential energy. We show that, when the action of the symmetry group on the configuration manifold is free and proper, a function which is linear in the velocities is weakly-Noetherian if anf only if it is a gauge momenta which has a horizontal generator.
Citation: Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. Linear weakly Noetherian constants of motion are horizontal gauge momenta. Journal of Geometric Mechanics, 2012, 4 (2) : 129-136. doi: 10.3934/jgm.2012.4.129
References:
[1]

C. Agostinelli, Nuova forma sintetica delle equazioni del moto di un sistema anolonomo ed esistenza di un integrale lineare nelle velocità lagrangiane, Boll. Un. Mat. Ital. (3), 11 (1956), 1-9.

[2]

L. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308. doi: 10.1016/0034-4877(96)84069-9.

[3]

S. Benenti, A 'user-friendly' approach to the dynamical equations of non-holonomic systems, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 036, 33 pp.

[4]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99. doi: 10.1007/BF02199365.

[5]

A. M. Bloch, "Nonholonomic Mechanics and Controls,'' Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.

[6]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems, Dynamical Systems, 24 (2009), 187-222. doi: 10.1080/14689360802609344.

[7]

F. Cantrjn, M. de León, M. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys., 42 (1998), 25-45. doi: 10.1016/S0034-4877(98)80003-7.

[8]

F. Cantrjn, J. Cortés, M. de León and M. de Diego, On the geometry of generalized Chaplygin systems, Math. Proc. Cambridge Phil. Soc., 132 (2002), 323-351.

[9]

R. Cushman, D. Kemppainen, J. Śniatycki and L. Bates, Geometry of nonholonomic constraints, Proceedings of the XXVII Symposium on Mathematical Physics (Toruń, 1994), Rep. Math. Phys., 36 (1995), 275-286. doi: 10.1016/0034-4877(96)83625-1.

[10]

M. de León, J. C. Marrero and D. Martín de Diego, Mechanical systems with nonlinear constraints, Int. J. Th. Phys., 36 (1997), 979-995. doi: 10.1007/BF02435796.

[11]

F. Fassò, A. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Reg. Ch. Dyn., 12 (2007), 579-588. doi: 10.1134/S1560354707060019.

[12]

F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Rep. Math. Phys., 62 (2008), 345-367. doi: 10.1016/S0034-4877(09)00005-6.

[13]

F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems, J. Geom. Mech., 1 (2009), 389-416.

[14]

Il. Iliev and Khr. Semerdzhiev, Relations between the first integrals of a nonholonomic mechanical system and of the corresponding system freed of constraints, J. Appl. Math. Mech., 36 (1972), 381-388. doi: 10.1016/0021-8928(72)90049-4.

[15]

Il. Iliev and P. Ilija, On first integrals of a nonholonomic mechanical system, J. Appl. Math. Mech., 39 (1975), 147-150. doi: 10.1016/0021-8928(75)90046-5.

[16]

J. Koiller, Reduction of some classical nonholonomic systems with symmetry, Arch. Rat. Mech. An., 118 (1992), 113-148. doi: 10.1007/BF00375092.

[17]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, in "Classical and Quantum Integrability'' (Warsaw, 2001), Banach Center Publ., 59, Polish Acad. Sci., Warsaw, (2003), 223-242

[18]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,'' Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004.

[19]

J. Śniatycki, Nonholonomic Noether theorem and reduction of symmetries, Rep. Math. Phys., 42 (1998), 5-23. doi: 10.1016/S0034-4877(98)80002-5.

[20]

D. V. Zenkov, Linear conservation laws of nonholonomic systems with symmetry, in "Dynamical systems and differential equations'' (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., 2003, suppl., 967-976.

show all references

References:
[1]

C. Agostinelli, Nuova forma sintetica delle equazioni del moto di un sistema anolonomo ed esistenza di un integrale lineare nelle velocità lagrangiane, Boll. Un. Mat. Ital. (3), 11 (1956), 1-9.

[2]

L. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308. doi: 10.1016/0034-4877(96)84069-9.

[3]

S. Benenti, A 'user-friendly' approach to the dynamical equations of non-holonomic systems, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 036, 33 pp.

[4]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99. doi: 10.1007/BF02199365.

[5]

A. M. Bloch, "Nonholonomic Mechanics and Controls,'' Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.

[6]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems, Dynamical Systems, 24 (2009), 187-222. doi: 10.1080/14689360802609344.

[7]

F. Cantrjn, M. de León, M. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys., 42 (1998), 25-45. doi: 10.1016/S0034-4877(98)80003-7.

[8]

F. Cantrjn, J. Cortés, M. de León and M. de Diego, On the geometry of generalized Chaplygin systems, Math. Proc. Cambridge Phil. Soc., 132 (2002), 323-351.

[9]

R. Cushman, D. Kemppainen, J. Śniatycki and L. Bates, Geometry of nonholonomic constraints, Proceedings of the XXVII Symposium on Mathematical Physics (Toruń, 1994), Rep. Math. Phys., 36 (1995), 275-286. doi: 10.1016/0034-4877(96)83625-1.

[10]

M. de León, J. C. Marrero and D. Martín de Diego, Mechanical systems with nonlinear constraints, Int. J. Th. Phys., 36 (1997), 979-995. doi: 10.1007/BF02435796.

[11]

F. Fassò, A. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions, Reg. Ch. Dyn., 12 (2007), 579-588. doi: 10.1134/S1560354707060019.

[12]

F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Rep. Math. Phys., 62 (2008), 345-367. doi: 10.1016/S0034-4877(09)00005-6.

[13]

F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems, J. Geom. Mech., 1 (2009), 389-416.

[14]

Il. Iliev and Khr. Semerdzhiev, Relations between the first integrals of a nonholonomic mechanical system and of the corresponding system freed of constraints, J. Appl. Math. Mech., 36 (1972), 381-388. doi: 10.1016/0021-8928(72)90049-4.

[15]

Il. Iliev and P. Ilija, On first integrals of a nonholonomic mechanical system, J. Appl. Math. Mech., 39 (1975), 147-150. doi: 10.1016/0021-8928(75)90046-5.

[16]

J. Koiller, Reduction of some classical nonholonomic systems with symmetry, Arch. Rat. Mech. An., 118 (1992), 113-148. doi: 10.1007/BF00375092.

[17]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, in "Classical and Quantum Integrability'' (Warsaw, 2001), Banach Center Publ., 59, Polish Acad. Sci., Warsaw, (2003), 223-242

[18]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,'' Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004.

[19]

J. Śniatycki, Nonholonomic Noether theorem and reduction of symmetries, Rep. Math. Phys., 42 (1998), 5-23. doi: 10.1016/S0034-4877(98)80002-5.

[20]

D. V. Zenkov, Linear conservation laws of nonholonomic systems with symmetry, in "Dynamical systems and differential equations'' (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst., 2003, suppl., 967-976.

[1]

Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. On the number of weakly Noetherian constants of motion of nonholonomic systems. Journal of Geometric Mechanics, 2009, 1 (4) : 389-416. doi: 10.3934/jgm.2009.1.389

[2]

Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006

[3]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[4]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez, Patrícia Santos. On the virial theorem for nonholonomic Lagrangian systems. Conference Publications, 2015, 2015 (special) : 204-212. doi: 10.3934/proc.2015.0204

[5]

Rehana Naz, Fazal M Mahomed, Azam Chaudhry. First integrals of Hamiltonian systems: The inverse problem. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2829-2840. doi: 10.3934/dcdss.2020121

[6]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Variational problems of Herglotz type with time delay: DuBois--Reymond condition and Noether's first theorem. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4593-4610. doi: 10.3934/dcds.2015.35.4593

[7]

Gianluca Gorni, Gaetano Zampieri. Lagrangian dynamics by nonlocal constants of motion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2751-2759. doi: 10.3934/dcdss.2020216

[8]

Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531

[9]

Rehana Naz, Fazal M. Mahomed. Characterization of partial Hamiltonian operators and related first integrals. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 723-734. doi: 10.3934/dcdss.2018045

[10]

Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977

[11]

Manuel F. Rañada. Quasi-bi-Hamiltonian structures and superintegrability: Study of a Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion. Journal of Geometric Mechanics, 2021, 13 (2) : 195-208. doi: 10.3934/jgm.2021003

[12]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[13]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[14]

Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007

[15]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[16]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[17]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[18]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[19]

Dirk Aeyels, Filip De Smet, Bavo Langerock. Area contraction in the presence of first integrals and almost global convergence. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 135-157. doi: 10.3934/dcds.2007.18.135

[20]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (6)

[Back to Top]