Advanced Search
Article Contents
Article Contents

Variational Integrators for Hamiltonizable Nonholonomic Systems

Abstract Related Papers Cited by
  • We report on new applications of the Poincaré and Sundman time-transformations to the simulation of nonholonomic systems. These transformations are here applied to nonholonomic mechanical systems known to be Hamiltonizable (briefly, nonholonomic systems whose constrained mechanics are Hamiltonian after a suitable time reparameterization). We show how such an application permits the usage of variational integrators for these non-variational mechanical systems. Examples are given and numerical results are compared to the standard nonholonomic integrator results.
    Mathematics Subject Classification: Primary: 37J60; Secondary: 34K28.


    \begin{equation} \\ \end{equation}
  • [1]

    A. M. Bloch, "Nonholonomic Mechanics and Control,'' Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003.


    A. M. Bloch, O. E. Fernandez and T. Mestdag, Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations, Rep. Math. Phys., 63 (2009), 225-249.doi: 10.1016/S0034-4877(09)90001-5.


    A. V. Borisov and I. S. Mamaev, Rolling of a rigid body on plane and sphere. Hierarchy of dynamics, Reg. Chaotic Dyn., 7 (2002), 177-200.


    A. V. Borisov and I. S. Mamaev, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Reg. Chaotic Dyn., 13 (2008), 443-490.doi: 10.1134/S1560354708050079.


    R. L. Burden and J. D. Faires, "Numerical Analysis,'' 8th edition, Thomson Brooks/Cole, Belmont, CA, 2005.


    S. A. Chaplygin, On a ball's rolling on a horizontal plane, (in Russian), Mat. Sbornik, 24 (1903), 139-168; (in English), Reg. Chaotic Dyn., 7 (2002), 131-148.


    S. A. Chaplygin, On the theory of motion of nonholonomic systems. The reducing-multiplier theorem, (in Russian), Mat. Sbornik, 28 (1911), 303-314; (in English), Reg. Chaotic Dyn., 13 (2008), 369-376.


    J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'' Lecture Notes in Mathematics, 1793, Springer-Verlag, Berlin, 2002.


    J. Cortés Monforte and S. Martĺnez, Nonholonomic integrators, Nonlinearity, 14 (2001), 1365-1392.doi: 10.1088/0951-7715/14/5/322.


    Y. N. Fedorov and B. Jovanović, Quasi-Chaplygin systems and nonholonomic rigid body dynamics, Lett. Math. Phys., 76 (2006), 215-230.doi: 10.1007/s11005-006-0069-3.


    Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie Groups, Nonlinearity, 18 (2005), 2211-2241.doi: 10.1088/0951-7715/18/5/017.


    O. E. Fernandez, "The Hamiltonization of Nonholonomic Systems and its Applications,'' Ph.D. Thesis, The University of Michigan, 2009.


    O. E. Fernandez and A. M. Bloch, The Weitzenböck connection and time reparameterization in nonholonomic mechanics, J. Math. Phys., 52 (2011), 012901, 18 pp.doi: 10.1063/1.3525798.


    O. E. Fernandez and A. M. Bloch, Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data, J. Phys. A, 41 (2008), 344005, 20 pp.doi: 10.1088/1751-8113/41/34/344005.


    O. E. Fernandez, T. Mestdag and A. M. Bloch, A generalization of Chaplygin's reducibility theorem, Reg. Chaotic Dyn., 14 (2009), 635-655.doi: 10.1134/S1560354709060033.


    P. Fitzpatrick, "Advanced Calculus,'' 2nd edition, Thomson Brooks/Cole, Belmont, CA, 2006.


    M. R. Flannery, The enigma of nonholonomic constraints, Am. J. of Phys., 73 (2005), 265-272.doi: 10.1119/1.1830501.


    Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A, 133 (1988), 134-139.doi: 10.1016/0375-9601(88)90773-6.


    E. Hairer, Variable time step integration with symplectic methods, Appl. Numer. Math., 25 (1997), 219-227.doi: 10.1016/S0168-9274(97)00061-5.


    D. Iglesias, J. C. Marrero, D. M. de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids, J. Nonlinear Sci., 18 (2008), 221-276.doi: 10.1007/s00332-007-9012-8.


    M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries, Discrete and Continuous Dynamical Systems, Series S, 3 (2010), 61-84.


    D. Korteweg, Über eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung und insbesondere Über kleine rollende Schwingungen um eine Gleichgewichtslage, Nieuw Archiefvoor Wiskunde, 4 (1899), 130-155.


    B. Leimkuhler and S. Reich, "Simulating Hamiltonian Dynamics,'' Cambridge Monographs on Applied and Computational Mathematics, 14, Cambridge Univ. Press, Cambridge, 2004.


    B. Leimkuhler and R. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems, J. Computational Phys., 112 (1994), 117-125.doi: 10.1006/jcph.1994.1085.


    M. Leok and J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numerical Analysis, 31 (2011), 1497-1532.


    J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,'' 2nd edition, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999.


    J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.doi: 10.1017/S096249290100006X.


    R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.doi: 10.1007/s00332-005-0698-1.


    T. Mestdag, A. M. Bloch and O. E. Fernandez, Hamiltonization and geometric integration of nonholonomic mechanical systems, in "Proc. 8th Nat. Congress on Theor. and Applied Mechanics," Brussels, Belgium, (2009), 230-236, arXiv:1105.5223.


    F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, eds., "NIST Handbook of Mathematical Functions,'' U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, MA, 2010.


    T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization, J. Geometry and Phys., 61 (2011), 1263-1291.doi: 10.1016/j.geomphys.2011.02.015.


    J. Ryckaert, G. Ciccotti and H. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Computational Phs., 23 (1977), 327-341.doi: 10.1016/0021-9991(77)90098-5.


    B. van Brunt, "The Calculus of Variations,'' Universitext, Springer-Verlag, New York, 2004.


    L. Verlet, Computer experiments on classical fluids, Phys. Rev., 159 (1967), 98-103.doi: 10.1103/PhysRev.159.98.

  • 加载中

Article Metrics

HTML views() PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint