June  2012, 4(2): 165-180. doi: 10.3934/jgm.2012.4.165

Dirac pairs

1. 

Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau, France

Received  April 2011 Published  August 2012

We extend the definition of the Nijenhuis torsion of an endomorphism of a Lie algebroid to that of a relation, and we prove that the torsion of the relation defined by a bi-Hamiltonian structure vanishes. Following Gelfand and Dorfman, we then define Dirac pairs, and we analyze the relationship of this general notion with the various kinds of compatible structures on manifolds, more generally, on Lie algebroids.
Citation: Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165
References:
[1]

P. Antunes, Poisson quasi-Nijenhuis structures with background, Lett. Math. Phys., 86 (2008), 33-45. doi: 10.1007/s11005-008-0272-5.  Google Scholar

[2]

A. Barakat, A. De Sole and V. G. Kac, Poisson vertex algebras in the theory of Hamiltonian equations, Japan. J. Math., 4 (2009), 141-252.  Google Scholar

[3]

J. Carinena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions, J. Phys. A, 37 (2004), 5189-5202.  Google Scholar

[4]

T. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661. doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[5]

I. Ya. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246. doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[6]

Irene Dorfman, "Dirac Structures and Integrability of Nonlinear Evolution Equations,'' Nonlinear Science: Theory and Applications, John Wiley & Sons, Ltd., Chichester, 1993.  Google Scholar

[7]

H. Geiges, Symplectic couples on $4$-manifolds, Duke Math. J., 85 (1996), 701-711. doi: 10.1215/S0012-7094-96-08527-0.  Google Scholar

[8]

I. M. Gel'fand and I. Ja. Dorfman, Hamiltonian operators and algebraic structures associated with them, (Russian) Funktsional. Anal. i Prilozhen., 13 (1979), 13-30; English transl., Funct. Anal. Appl., 13 (1979), 248-262.  Google Scholar

[9]

I. M. Gel'fand and I. Ja. Dorfman, Schouten bracket and Hamiltonian operators, (Russian) Funktsional. Anal. i Prilozhen., 14 (1980), 71-74; English transl., Funct. Anal. Appl., 14 (1980), 223-226. doi: 10.1007/BF01086188.  Google Scholar

[10]

Long-Guang He and Bao-Kang Liu, Dirac-Nijenhuis manifolds, Rep. Math. Phys., 53 (2004), 123-142. doi: 10.1016/S0034-4877(04)90008-0.  Google Scholar

[11]

Y. Kosmann-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie groups, in "Mathematical Aspects of Classical Field Theory'' (eds. M. Gotay, J. E. Marsden and V. Moncrief) (Seattle, WA, 1991), Contemp. Math., 132, American Mathematical Society, Providence, RI, (1992), 459-489.  Google Scholar

[12]

Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory, in "Higher Structures in Geometry and Physics''(eds. A. Cattaneo, A. Giaquinto and Ping Xu), Progr. Math., 287, Birkhäuser/Springer, New York (2011), 243-268.  Google Scholar

[13]

Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 625-649. doi: 10.1007/s00574-011-0032-5.  Google Scholar

[14]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35-81.  Google Scholar

[15]

Y. Kosmann-Schwarzbach and V. Rubtsov, Compatible structures on Lie algebroids and Monge-Amp\`ere operators, Acta. Appl. Math., 109 (2010), 101-135. doi: 10.1007/s10440-009-9444-2.  Google Scholar

[16]

A. Kushner, V. Lychagin and V. Rubtsov, "Contact Geometry and Nonlinear Differential Equations,'' Encyclopedia of Mathematics and its Applications, 101, Cambridge University Press, Cambridge, 2007.  Google Scholar

[17]

Zhang-Ju Liu, Some remarks on Dirac structures and Poisson reductions, in "Poisson Geometry'' (eds. J. Grabowski and P. Urbanski) (Warsaw, 1998), Banach Center Publications, 51, Polish Acad. Sci., Warsaw (2000), 165-173.  Google Scholar

[18]

Zhang-Ju Liu, A. Weinstein and Ping Xu, Manin triples for Lie bialgebroids, J. Differential Geom., 45 (1997), 547-574.  Google Scholar

[19]

V. V. Lychagin, V. N. Rubtsov and I. V. Chekalov, A classification of Monge-Ampère equations, Ann. Sci. École Norm. Sup. (4), 26 (1993), 281-308.  Google Scholar

[20]

D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., 61 (2002), 123-137.  Google Scholar

[21]

Y. Terashima, On Poisson functions, J. Sympl. Geom., 6 (2008), 1-7.  Google Scholar

[22]

A. Weinstein, A note on the Wehrheim-Woodward category, J. Geom. Mechanics, 3 (2011), 507-515. Google Scholar

[23]

Yanbin Yin and Longguang He, Dirac strucures on protobialgebroids, Sci. China Ser. A, 49 (2006), 1341-1352. doi: 10.1007/s11425-006-1997-1.  Google Scholar

show all references

References:
[1]

P. Antunes, Poisson quasi-Nijenhuis structures with background, Lett. Math. Phys., 86 (2008), 33-45. doi: 10.1007/s11005-008-0272-5.  Google Scholar

[2]

A. Barakat, A. De Sole and V. G. Kac, Poisson vertex algebras in the theory of Hamiltonian equations, Japan. J. Math., 4 (2009), 141-252.  Google Scholar

[3]

J. Carinena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions, J. Phys. A, 37 (2004), 5189-5202.  Google Scholar

[4]

T. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661. doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[5]

I. Ya. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246. doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[6]

Irene Dorfman, "Dirac Structures and Integrability of Nonlinear Evolution Equations,'' Nonlinear Science: Theory and Applications, John Wiley & Sons, Ltd., Chichester, 1993.  Google Scholar

[7]

H. Geiges, Symplectic couples on $4$-manifolds, Duke Math. J., 85 (1996), 701-711. doi: 10.1215/S0012-7094-96-08527-0.  Google Scholar

[8]

I. M. Gel'fand and I. Ja. Dorfman, Hamiltonian operators and algebraic structures associated with them, (Russian) Funktsional. Anal. i Prilozhen., 13 (1979), 13-30; English transl., Funct. Anal. Appl., 13 (1979), 248-262.  Google Scholar

[9]

I. M. Gel'fand and I. Ja. Dorfman, Schouten bracket and Hamiltonian operators, (Russian) Funktsional. Anal. i Prilozhen., 14 (1980), 71-74; English transl., Funct. Anal. Appl., 14 (1980), 223-226. doi: 10.1007/BF01086188.  Google Scholar

[10]

Long-Guang He and Bao-Kang Liu, Dirac-Nijenhuis manifolds, Rep. Math. Phys., 53 (2004), 123-142. doi: 10.1016/S0034-4877(04)90008-0.  Google Scholar

[11]

Y. Kosmann-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie groups, in "Mathematical Aspects of Classical Field Theory'' (eds. M. Gotay, J. E. Marsden and V. Moncrief) (Seattle, WA, 1991), Contemp. Math., 132, American Mathematical Society, Providence, RI, (1992), 459-489.  Google Scholar

[12]

Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory, in "Higher Structures in Geometry and Physics''(eds. A. Cattaneo, A. Giaquinto and Ping Xu), Progr. Math., 287, Birkhäuser/Springer, New York (2011), 243-268.  Google Scholar

[13]

Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 625-649. doi: 10.1007/s00574-011-0032-5.  Google Scholar

[14]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35-81.  Google Scholar

[15]

Y. Kosmann-Schwarzbach and V. Rubtsov, Compatible structures on Lie algebroids and Monge-Amp\`ere operators, Acta. Appl. Math., 109 (2010), 101-135. doi: 10.1007/s10440-009-9444-2.  Google Scholar

[16]

A. Kushner, V. Lychagin and V. Rubtsov, "Contact Geometry and Nonlinear Differential Equations,'' Encyclopedia of Mathematics and its Applications, 101, Cambridge University Press, Cambridge, 2007.  Google Scholar

[17]

Zhang-Ju Liu, Some remarks on Dirac structures and Poisson reductions, in "Poisson Geometry'' (eds. J. Grabowski and P. Urbanski) (Warsaw, 1998), Banach Center Publications, 51, Polish Acad. Sci., Warsaw (2000), 165-173.  Google Scholar

[18]

Zhang-Ju Liu, A. Weinstein and Ping Xu, Manin triples for Lie bialgebroids, J. Differential Geom., 45 (1997), 547-574.  Google Scholar

[19]

V. V. Lychagin, V. N. Rubtsov and I. V. Chekalov, A classification of Monge-Ampère equations, Ann. Sci. École Norm. Sup. (4), 26 (1993), 281-308.  Google Scholar

[20]

D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. Math. Phys., 61 (2002), 123-137.  Google Scholar

[21]

Y. Terashima, On Poisson functions, J. Sympl. Geom., 6 (2008), 1-7.  Google Scholar

[22]

A. Weinstein, A note on the Wehrheim-Woodward category, J. Geom. Mechanics, 3 (2011), 507-515. Google Scholar

[23]

Yanbin Yin and Longguang He, Dirac strucures on protobialgebroids, Sci. China Ser. A, 49 (2006), 1341-1352. doi: 10.1007/s11425-006-1997-1.  Google Scholar

[1]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[2]

Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007

[3]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[4]

Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167

[5]

Manuel F. Rañada. Quasi-bi-Hamiltonian structures and superintegrability: Study of a Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion. Journal of Geometric Mechanics, 2021, 13 (2) : 195-208. doi: 10.3934/jgm.2021003

[6]

Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[7]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactions and peakons. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 419-432. doi: 10.3934/dcds.1997.3.419

[8]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[9]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[10]

Rita Ferreira, Elvira Zappale. Bending-torsion moments in thin multi-structures in the context of nonlinear elasticity. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1747-1793. doi: 10.3934/cpaa.2020072

[11]

K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87.

[12]

Hassan Najafi Alishah. Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures. Journal of Geometric Mechanics, 2020, 12 (2) : 149-164. doi: 10.3934/jgm.2020008

[13]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-hamiltonian dynamical system ii. complex analytic behavior and convergence to non-analytic solutions. Discrete & Continuous Dynamical Systems, 1998, 4 (1) : 159-191. doi: 10.3934/dcds.1998.4.159

[14]

Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013

[15]

Partha Guha, Indranil Mukherjee. Hierarchies and Hamiltonian structures of the Nonlinear Schrödinger family using geometric and spectral techniques. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1677-1695. doi: 10.3934/dcdsb.2018287

[16]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[17]

William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307

[18]

Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255

[19]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[20]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]