September  2012, 4(3): 207-237. doi: 10.3934/jgm.2012.4.207

Kinematic reduction and the Hamilton-Jacobi equation

1. 

Departamento de Matemáticas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain

2. 

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), C/Nicolás Cabrera 13-15, 28049 Madrid, Spain

3. 

Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, Campus de Cantoblanco, UAM, C/Nicolás Cabrera, 15, 28049 Madrid

4. 

Unidad asociada ULL-CSIC, Geometría diferencial y mecánica geométrica, Departamento de Matemática Fundamental, Facultad de Matemáticas, Universidad de la Laguna, 38071 La Laguna, Tenerife, Canary Islands, Spain

5. 

Departamento de Matemática Aplicada IV, Universitat Politècnica de Catalunya-BarcelonaTech., Edificio C-3, Campus Norte UPC. C/ Jordi Girona 1, E-08034 Barcelona, Spain

Received  October 2011 Revised  March 2012 Published  October 2012

A close relationship between the classical Hamilton-Jacobi theory and the kinematic reduction of control systems by decoupling vector fields is shown in this paper. The geometric interpretation of this relationship relies on new mathematical techniques for mechanics defined on a skew-symmetric algebroid. This geometric structure allows us to describe in a simplified way the mechanics of nonholonomic systems with both control and external forces.
Citation: María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," $2^{nd}$ edition, Benjamin, New York, 1978.

[2]

P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics: Hamilton-Jacobi equation and applications, Nonlinearity, 23 (2010), 1887-1918. doi: 10.1088/0951-7715/23/8/006.

[3]

M. Barbero-Liñán and M. C. Muñoz Lecanda, Strict abnormal extremals in nonholonomic and kinematic control systems, Special issue "Nonholonomic constraints in Mechanics and Optimal Control Theory" in Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 1-17.

[4]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems," Texts in Applied Mathematics, Springer Verlag, New York, 2005.

[5]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda and N. Roman-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417-1458.

[6]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda and N. Roman-Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431-454.

[7]

J. Cortés, M. de León, J. C. Marrero, D. Martín de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509-558.

[8]

J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst. Ser. A, 24 (2009), 213-271. doi: 10.3934/dcds.2009.24.213.

[9]

J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids, IMA J. Math. Control. Inform., 21 (2004), 457-492. doi: 10.1093/imamci/21.4.457.

[10]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math Theoret., 41 (2008), 175-204.

[11]

K. Grabowska, J. Grabowski and P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 559-575.

[12]

J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 17 pp. 013520. doi: 10.1063/1.3049752.

[13]

D. Iglesias, M. de Le\ón and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, J. Phys. A: Math. Theor., 41 (2008), 14 pp. 015205. doi: 10.1088/1751-8113/41/1/015205.

[14]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi theory. Applications to nonholonomic mechanics, Journal of Geometric Mechanics, 2 (2010), 159-198.

[15]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-R308. doi: 10.1088/0305-4470/38/24/R01.

[16]

M. de León and P. R. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics," North Holland Math. Series, 152, Amsterdam, 1996.

[17]

P. Libermann, Lie algebroids and mechanics, Arch. Math. (Brno), 32 (1996), 147-162.

[18]

K. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids in Differential Geometry," London Mathematical Society Lecture Note Series, 213, 2005.

[19]

J. C. Marrero and D. Sosa, The Hamilton-Jacobi equation on Lie affgebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 605-622.

[20]

E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320. doi: 10.1023/A:1011965919259.

[21]

M. C. Muñoz-Lecanda and F. J. Yañiz-Fernández, Mechanical control systems and kinematic systems, IEEE Trans. Automat. Control, 53 (2008), 1297-1302. doi: 10.1109/TAC.2008.921004.

[22]

T. Ohsawa and A. M. Bloch, Nonholonomic Hamilton-Jacobi equation and Integrability, Journal of Geometric Mechanics, 1 (2009), 461-481.

[23]

M. Popescu and P. Popescu, Geometric objects defined by almost Lie structures, in "Proc. Workshop on Lie Algebroids and Related Topics in Differential Geometry" (Warsaw), Warsaw: Banach Center Publications, 54 (2001), 217-233.

[24]

H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Transactions of the American Mathematical Society, 180 (1973), 171-188. doi: 10.1090/S0002-9947-1973-0321133-2.

[25]

A. Weinstein, Lagrangian mechanics and groupoids, in "Proceedings of Mechanics Day" (Waterloo, ON, 1992), Fields Institute Communications, Amer. Math. Soc., 7 (1996), 207-231.

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," $2^{nd}$ edition, Benjamin, New York, 1978.

[2]

P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics: Hamilton-Jacobi equation and applications, Nonlinearity, 23 (2010), 1887-1918. doi: 10.1088/0951-7715/23/8/006.

[3]

M. Barbero-Liñán and M. C. Muñoz Lecanda, Strict abnormal extremals in nonholonomic and kinematic control systems, Special issue "Nonholonomic constraints in Mechanics and Optimal Control Theory" in Discrete Contin. Dyn. Syst. Ser. S, 3 (2010), 1-17.

[4]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems," Texts in Applied Mathematics, Springer Verlag, New York, 2005.

[5]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda and N. Roman-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417-1458.

[6]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda and N. Roman-Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431-454.

[7]

J. Cortés, M. de León, J. C. Marrero, D. Martín de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509-558.

[8]

J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst. Ser. A, 24 (2009), 213-271. doi: 10.3934/dcds.2009.24.213.

[9]

J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids, IMA J. Math. Control. Inform., 21 (2004), 457-492. doi: 10.1093/imamci/21.4.457.

[10]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math Theoret., 41 (2008), 175-204.

[11]

K. Grabowska, J. Grabowski and P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 559-575.

[12]

J. Grabowski, M. de León, J. C. Marrero and D. Martín de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 17 pp. 013520. doi: 10.1063/1.3049752.

[13]

D. Iglesias, M. de Le\ón and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, J. Phys. A: Math. Theor., 41 (2008), 14 pp. 015205. doi: 10.1088/1751-8113/41/1/015205.

[14]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi theory. Applications to nonholonomic mechanics, Journal of Geometric Mechanics, 2 (2010), 159-198.

[15]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-R308. doi: 10.1088/0305-4470/38/24/R01.

[16]

M. de León and P. R. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics," North Holland Math. Series, 152, Amsterdam, 1996.

[17]

P. Libermann, Lie algebroids and mechanics, Arch. Math. (Brno), 32 (1996), 147-162.

[18]

K. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids in Differential Geometry," London Mathematical Society Lecture Note Series, 213, 2005.

[19]

J. C. Marrero and D. Sosa, The Hamilton-Jacobi equation on Lie affgebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 605-622.

[20]

E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320. doi: 10.1023/A:1011965919259.

[21]

M. C. Muñoz-Lecanda and F. J. Yañiz-Fernández, Mechanical control systems and kinematic systems, IEEE Trans. Automat. Control, 53 (2008), 1297-1302. doi: 10.1109/TAC.2008.921004.

[22]

T. Ohsawa and A. M. Bloch, Nonholonomic Hamilton-Jacobi equation and Integrability, Journal of Geometric Mechanics, 1 (2009), 461-481.

[23]

M. Popescu and P. Popescu, Geometric objects defined by almost Lie structures, in "Proc. Workshop on Lie Algebroids and Related Topics in Differential Geometry" (Warsaw), Warsaw: Banach Center Publications, 54 (2001), 217-233.

[24]

H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Transactions of the American Mathematical Society, 180 (1973), 171-188. doi: 10.1090/S0002-9947-1973-0321133-2.

[25]

A. Weinstein, Lagrangian mechanics and groupoids, in "Proceedings of Mechanics Day" (Waterloo, ON, 1992), Fields Institute Communications, Amer. Math. Soc., 7 (1996), 207-231.

[1]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[2]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[3]

Hitoshi Ishii, Taiga Kumagai. Averaging of Hamilton-Jacobi equations along divergence-free vector fields. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1519-1542. doi: 10.3934/dcds.2020329

[4]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[5]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[6]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[7]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[8]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[9]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

[10]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[11]

Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917

[12]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[13]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

[14]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[15]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[16]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[17]

Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022061

[18]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[19]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[20]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i

[Back to Top]