Citation: |
[1] |
I. Bucataru, O. A. Constantinescu and M. F. Dahl, A geometric setting for systems of ordinary differential equations, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1291-1327.doi: 10.1142/S0219887811005701. |
[2] |
M. Crampin, Homogeneous systems of higher-order ordinary differential equations, Communications in Mathematics, 18 (2010), 37-50. |
[3] |
M. Crampin and D. J. Saunders, The Hilbert-Carathéodory and Poincaré-Cartan forms for higher-order multiple-integral variational problems, Houston J. Math., 30 (2004), 657-689. |
[4] |
F. Faà di Bruno, Sullo sviluppo delle Funzioni, Annali di Scienze Matematiche e Fisiche, 6 (1855), 479-480. |
[5] |
I. Kolář, P. W. Michor and J. Slovak, "Natural Operations in Differential Geometry," Springer-Verlag, Berlin, 1993. |
[6] |
B. S. Kruglikov and V. V. Lychagin, Geometry of differential equations, in "Handbook of Global Analysis" (eds. D. Krupka and D. J. Saunders), 1214, Elsevier Sci. B. V., Amsterdam, (2008), 725-771. |
[7] |
R. Ya. Matsyuk, Higher order variational origin of the Dixon's system and its relation to the quasi-classical 'Zitterbewegung' in general relativity, preprint, arXiv:1101.5384. |
[8] |
J. Muñoz Masqué and I. M. Pozo Coronado, Parameter-invariant second-order variational problems in one varaiable, J. Phys. A, 31 (1998), 6225-6242.doi: 10.1088/0305-4470/31/29/014. |
[9] |
J. J. Stoker, "Differential Geometry," Pure and Applied Mathematics, Vol. XX, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1969. |