September  2012, 4(3): 297-311. doi: 10.3934/jgm.2012.4.297

Dual pairs in resonances

1. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

2. 

Department of Mathematics, West University of Timişoara, 300223 Timişoara, Romania

Received  November 2010 Revised  May 2011 Published  October 2012

A family of dual pairs of Poisson maps associated to $n:m$ and $n:-m$ resonances are investigated using Nambu-type Poisson structures.
Citation: Darryl D. Holm, Cornelia Vizman. Dual pairs in resonances. Journal of Geometric Mechanics, 2012, 4 (3) : 297-311. doi: 10.3934/jgm.2012.4.297
References:
[1]

R. Cushman and D. L. Rod, Reduction of the semisimple $1:1$ resonance,, Physica D, 6 (1982), 105.   Google Scholar

[2]

A. Elipe, Complete reduction of oscillators in resonance $p:q$,, Phys. Rev. E, 61 (2000), 6477.   Google Scholar

[3]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Appl. Math., 87 (2005), 93.   Google Scholar

[4]

F. Gay-Balmaz and C. Vizman, Dual pairs in fluid dynamics,, Ann. Global. Anal. Geom., ().   Google Scholar

[5]

D. D. Holm, "Geometric Mechanics Part 1: Dynamics and Symmetry,", World Scientific, (2008).   Google Scholar

[6]

D. D. Holm and J. E. Marsden [2004], Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation, in The Breadth of Symplectic and Poisson Geometry,, A Festshrift for Alan Weinstein, 232 (2004), 203.   Google Scholar

[7]

T. Iwai, On reduction of two degrees of freedom Hamiltonian systems by an $S^1$ action and $SO_0(1,2)$ as a dynamical group,, J. Math. Phys., 26 (1985), 885.   Google Scholar

[8]

M. Kummer, On resonant nonlinearly coupled oscillators with two equal frequencies,, Commun. Math. Phys., 48 (1976), 53.   Google Scholar

[9]

M. Kummer, On resonant classical Hamiltonians with two equal frequencies,, Commun. Math. Phys., 58 (1978), 85.  doi: 10.1007/BF01624789.  Google Scholar

[10]

M. Kummer, On the construction of the reduced phase space of a Hamiltonian system with symmetry,, Indiana Univ. Math. J., 30 (1981), 281.  doi: 10.1512/iumj.1981.30.30022.  Google Scholar

[11]

M. Kummer, On resonant Hamiltonian systems with finitely many degrees of freedom,, in, 252 (1986), 19.   Google Scholar

[12]

J. E. Marsden, Generic Bifurcation of Hamiltonian Systems with Symmetry, appendix to Golubitsky and Stewart, Physica D,, 24 (1987), 24 (1987), 391.   Google Scholar

[13]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids,, Phys. D, 7 (1983), 305.   Google Scholar

[14]

A. S. Mishenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl., 12 (1978), 113.   Google Scholar

[15]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics (Boston, 222 (2004).   Google Scholar

[16]

A. Weinstein, The local structure of Poisson manifolds,, J. Diff. Geom., 18 (1983), 523.   Google Scholar

show all references

References:
[1]

R. Cushman and D. L. Rod, Reduction of the semisimple $1:1$ resonance,, Physica D, 6 (1982), 105.   Google Scholar

[2]

A. Elipe, Complete reduction of oscillators in resonance $p:q$,, Phys. Rev. E, 61 (2000), 6477.   Google Scholar

[3]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Appl. Math., 87 (2005), 93.   Google Scholar

[4]

F. Gay-Balmaz and C. Vizman, Dual pairs in fluid dynamics,, Ann. Global. Anal. Geom., ().   Google Scholar

[5]

D. D. Holm, "Geometric Mechanics Part 1: Dynamics and Symmetry,", World Scientific, (2008).   Google Scholar

[6]

D. D. Holm and J. E. Marsden [2004], Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation, in The Breadth of Symplectic and Poisson Geometry,, A Festshrift for Alan Weinstein, 232 (2004), 203.   Google Scholar

[7]

T. Iwai, On reduction of two degrees of freedom Hamiltonian systems by an $S^1$ action and $SO_0(1,2)$ as a dynamical group,, J. Math. Phys., 26 (1985), 885.   Google Scholar

[8]

M. Kummer, On resonant nonlinearly coupled oscillators with two equal frequencies,, Commun. Math. Phys., 48 (1976), 53.   Google Scholar

[9]

M. Kummer, On resonant classical Hamiltonians with two equal frequencies,, Commun. Math. Phys., 58 (1978), 85.  doi: 10.1007/BF01624789.  Google Scholar

[10]

M. Kummer, On the construction of the reduced phase space of a Hamiltonian system with symmetry,, Indiana Univ. Math. J., 30 (1981), 281.  doi: 10.1512/iumj.1981.30.30022.  Google Scholar

[11]

M. Kummer, On resonant Hamiltonian systems with finitely many degrees of freedom,, in, 252 (1986), 19.   Google Scholar

[12]

J. E. Marsden, Generic Bifurcation of Hamiltonian Systems with Symmetry, appendix to Golubitsky and Stewart, Physica D,, 24 (1987), 24 (1987), 391.   Google Scholar

[13]

J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids,, Phys. D, 7 (1983), 305.   Google Scholar

[14]

A. S. Mishenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl., 12 (1978), 113.   Google Scholar

[15]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics (Boston, 222 (2004).   Google Scholar

[16]

A. Weinstein, The local structure of Poisson manifolds,, J. Diff. Geom., 18 (1983), 523.   Google Scholar

[1]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[2]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[3]

Xi Zhao, Teng Niu. Impacts of horizontal mergers on dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020173

[4]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[5]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[6]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[7]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[8]

Hongxia Sun, Yao Wan, Yu Li, Linlin Zhang, Zhen Zhou. Competition in a dual-channel supply chain considering duopolistic retailers with different behaviours. Journal of Industrial & Management Optimization, 2021, 17 (2) : 601-631. doi: 10.3934/jimo.2019125

[9]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[10]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[11]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[14]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[15]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[16]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[17]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]