Citation: |
[1] |
A. F. Andreev and I. A. Grishchuk, Spin nematics, Sov. Phys. JETP, 60 (1984), 267-271. |
[2] |
R. D. Batten, F. H. Stillinger and S. Torquato, Phase behavior of colloidal superballs: Shape interpolation from spheres to cubes, Phys. Rev. E, 81 (2010), 061105. |
[3] |
S. Blenk, H. Ehrentraut and W. Muschik, Statistical foundation of macroscopic balances for liquid crystals in alignment tensor formulation, Phys. A, 174 (1991), 119-138. |
[4] |
S. Blenk, H. Ehrentraut and W. Muschik, Macroscopic constitutive equations for liquid crystals induced by their mesoscopic orientation distribution, Int. J. Engng Sci., 30 (1992), 1127-1143. |
[5] |
G. Brodin, M. Marklund, J. Zamanian, AA. Ericsson and P. L. Mana, Effects of the $g$ factor in semiclassical kinetic plasma theory, Phys. Rev. Lett., 101 (2008), 245002. |
[6] |
H. Cendra, D. D. Holm, M. J. W. Hoyle and J. E. Marsden, The Maxwell-Vlasov equations in Euler-Poincaré form, J. Math. Phys., 39 (1998), 3138-3157. |
[7] |
S. Chandrasekhar, "Liquid Crystals," Second Edition. Cambridge University Press, Cambridge, 1992. |
[8] |
P. Constantin, Nonlinear Fokker-Planck Navier-Stokes systems, Commun. Math. Sci., 3 (2005), 531-544. |
[9] |
D. A. Dem'yanenko and M. Yu. Kovalevskiĭ, Classification of the equilibrium states of magnets with vector and quadrupole order parameters, Low Temp. Phys., 33 (2007), 965-973. |
[10] |
M. Doi and S. F. Edwards, "The Theory of Polymer Dynamics," Oxford University Press, 1988. |
[11] |
P. D. Duncan, M. Dennison, A. J. Masters and M. R. Wilson, Theory and computer simulation for the cubatic phase of cut spheres, Phys. Rev. E, 79 (2009), 031702. |
[12] |
I. E. Dzyaloshinskiĭ and G. E. Volovik, Poisson brackets in condensed matter physics, Ann. Phys., 125 (1980), 67-97. |
[13] |
A. C. Eringen, A unified continuum theory of liquid crystals, ARI, 50 (1997), 73-84. |
[14] |
K. H. Fischer, Ferromagnetic modes in spin glasses and dilute ferromagnets, Z. Physik B, 39 (1980), 37-46. |
[15] |
F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids, Adv App Math, 42 (2009), 176-275. |
[16] |
F. Gay-Balmaz, T. S. Ratiu and C. Tronci, Equivalent theories of liquid crystal dynamics, arXiv:1102.2918. |
[17] |
F. Gay-Balmaz, T. S. Ratiu and C. Tronci, Euler-Poincaré approaches to nematodynamics, Acta Appl. Math., 120 (2012), 127151.doi: 10.1007/s10440-012-9719-x. |
[18] |
F. Gay-Balmaz and C. Tronci, Reduction theory for symmetry breaking with applications to nematic systems, Phys. D, 239 (2010), 1929-1947. |
[19] |
F. Gay-Balmaz, C. Tronci and C. Vizman, Geodesic flows on the automorphism group of principal bundles, arXiv:1006.0650. |
[20] |
P. G. de Gennes, Short range order effects in the isotropic phase of nematics and cholesterics, Mol. Cryst. Liq. Cryst., 12 (1971), 193-214.doi: 10.1080/15421407108082773. |
[21] |
P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals," 2nd edn. Oxford University Press, Oxford, 1993. |
[22] |
J. Gibbons, D. D. Holm and B. A. Kupershmidt, The Hamiltonian structure of classical chromohydrodynamics, Physica D, 6 (1983), 179-194. |
[23] |
J. Gibbons, D. D. Holm and C. Tronci, Geometry of Vlasov kinetic moments: A bosonic Fock space for the symmetric Schouten bracket, Phys. Lett. A, 372 (2008), 4184-4196. |
[24] |
B. I. Halperin and W. M. Saslow, Hydrodynamic theory of spin waves in spin glasses and other systems with noncollinear spin orientations, Phys. Rev. B, 16 (1977), 2154-2162.doi: 10.1103/PhysRevB.16.2154. |
[25] |
D. D. Holm, Euler-Poincaré dynamics of perfect complex fluids, in "Geometry, Mechanics, and Dynamics,'' Springer, New York, (2002), 113-167 |
[26] |
D. D. Holm, Hamiltonian dynamics of a charged fluid, including electro- and magnetohydrodynamics, Phys. Lett. A, 114 (1986), 137-141. |
[27] |
D. D. Holm, Hamiltonian dynamics and stability analysis of neutral electromagnetic fluids with induction, Physica D, 25 (1987), 261-287. |
[28] |
D. D. Holm, R. I. Ivanov and J. R. Percival, $G$-Strands, J. Nonlinear Sci., 22 (2012), 517-551.doi: 10.1007/s00332-012-9135-4. |
[29] |
D. D. Holm and B. A. Kupershmidt, Hamiltonian formulation of ferromagnetic hydrodynamics, Phys. Lett. A, 129 (1988), 93-100. |
[30] |
D. D. Holm and B. A. Kupershmidt, Poisson structures of superfluids, Phys. Lett. A, 91 (1982), 425-430. |
[31] |
D. D. Holm and B. A. Kupershmidt, The analogy between spin glasses and Yang-Mills fluids, J. Math Phys., 29 (1988), 21-30.doi: 10.1063/1.528176. |
[32] |
D. D. Holm and B. A. Kupershmidt, Yang-Mills magnetohydrodynamics, Phys. Rev. D, 30 (1984), 2557-2560. |
[33] |
D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81. |
[34] |
D. D. Holm, J. E. Marsden, T. S. Ratiu and A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Phys. Rep., 123 (1985), 1-116. |
[35] |
D. D. Holm, V. Putkaradze and C. Tronci, Double bracket dissipation in kinetic theory for particles with anisotropic interactions, Proc. R. Soc. A, 466 (2010), 2991-3012.doi: 10.1098/rspa.2010.0043. |
[36] |
D. D. Holm, T. Schmah and C. Stoica, "Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions," Oxford University Press, 2009. |
[37] |
D. D. Holm and C. Tronci, Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions, Proc. R. Soc. A, 465 (2008), 457-476. |
[38] |
D. D. Holm and C. Tronci, The geodesic Vlasov equation and its integrable moment closures, J. Geom. Mech., 1 (2009), 181-208. |
[39] |
A. A. Isayev, Hamiltonian formalism in the theory of quadruple magnet, Low Temp. Phys., 23 (1997), 933-935. |
[40] |
A. A. Isaev, M. Yu. Kovalevskiĭ and S. V. Peletminskiĭ, Hamiltonian approach in the theory of condensed media with spontaneously broken symmetry, Phys Part Nuclei, 27 (1996), 179-203. |
[41] |
A. Kadič and D. G. B. Edelen, A gauge theory of dislocations and disclinations, Lect. Notes Phys., 174 (1983). |
[42] |
Y. L. Klimontovich, "The Statistical Theory of Non-equilibrium Processes in a Plasma," M. I. T. Press, Cambridge, Massachusetts, 1967. |
[43] |
P. S. Krishnaprasad and J. E. Marsden, Hamiltonian structure and stability for rigid bodies with flexible attachments, Arch. Rational Mech. Anal., 98 (1987), 71-93. |
[44] |
A. Läuchli, J. C. Domenge, C. Lhuillier, P. Sindzingre and M. Troyer, Two-step restoration of $SU(2)$ symmetry in a frustrated ring-exchange magnet, Phys. Rev. Lett., 95 (2005), 137206. |
[45] |
F. M. Leslie, Some topics in continuum theory of nematics, Philos. Trans. Soc. London Ser. A, 309 (1983), 155-165. |
[46] |
M. Marklund and P. J. Morrison, Gauge-free Hamiltonian structure of the spin Maxwell-Vlasov equations, Phys. Lett. A, 305 (2011), 2362-2365. |
[47] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Springer-Verlag, 1994. |
[48] |
J. E. Marsden, T. S. Ratiu and A. Weinstein, Semidirect products and reduction in mechanics, Trans. Amer. Math. Soc., 281 (1984), 147-177.doi: 10.1090/S0002-9947-1984-0719663-1. |
[49] |
J. E. Marsden, A. Weinstein, T. Ratiu, R. Schimd and R. G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 289-340. |
[50] |
R. Montgomery, Canonical formulations of a classical particle in a Yang-Mills field and Wong's equations, Lett. Math. Phys., 8 (1984), 59-67. |
[51] |
R. Montgomery, J. Marsden and T. Ratiu, Gauged Lie-Poisson structures, Contemp. Math., 28 (1984), 101-114.doi: 10.1090/conm/028/751976. |
[52] |
K. Penc and M. Läuchli, Spin nematic phases in quantum spin systems, Springer Ser. Solid-State Sci., 164 (2011), 331-362.doi: 10.1007/978-3-642-10589-0_13. |
[53] |
L. Onsager, The effects of shape on the interaction of colloidal particles, Ann. N. Y. Acad. Sci., 51 (1949), 627-659. |
[54] |
R. G. Spencer, The Hamiltonian structure of multi-species fluid electrodynamics, AIP Conf. Proc., 88 (1982), 121-126.doi: 10.1063/1.33630. |
[55] |
R. G. Spencer and A. N. Kaufman, Hamiltonian structure of two-fluid plasma dynamics, Phys. Rev. A (3), 25 (1982), 2437-2439. |
[56] |
H. Stark and T. C. Lubensky, Poisson-bracket approach to the dynamics of nematic liquid crystals, Phys. Rev. E, 67 (2003), 061709. |
[57] |
J. Sudan, A. Lüscher and A. M. Läuchli, Emergent multipolar spin correlations in a fluctuating spiral: the frustrated ferromagnetic spin-$1/2$ Heisenberg chain in a magnetic field, Phys. Rev. B, 80 (2009), 140402(R). |
[58] |
H. Tsunetsugu and M. Arikawa, Spin nematic phase in $S=1$ triangular antiferromagnets, J. Phys. Soc. Jpn., 75 (2006), 083701. |
[59] |
J. A. C. Veerman and D. Frenkel, Phase behavior of disklike hard-core mesogens, Phys. Rev. A, 45 (1992), 5632-5648. |
[60] |
G. E. Volovik and I. E. Dzyaloshinskiĭ, Additional localized degrees of freedom in spin glasses, Sov. Phys. JETP, 48 (1978), 555-559. |
[61] |
G. E. Volovik and E. I. Kats, Nonlinear hydrodynamics of liquid crystals, Sov. Phys. JETP, 54 (1981), 122-126. |