December  2012, 4(4): 365-383. doi: 10.3934/jgm.2012.4.365

Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics

1. 

Fakultät f¨ur Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria

2. 

EdLabs, Harvard University, 44 Brattle Street, Cambridge, MA 02138

Received  September 2011 Revised  May 2012 Published  January 2013

In continuation of [7] we discuss metrics of the form $$ G^P_f(h,k)=\int_M \sum_{i=0}^p\Phi_i\big(Vol(f)\big)\ \bar{g}\big((P_i)_fh,k\big) vol(f^*\bar{g}) $$ on the space of immersions $Imm(M,N)$ and on shape space $B_i(M,N)=Imm(M,N)/{Diff}(M)$. Here $(N,\bar{g})$ is a complete Riemannian manifold, $M$ is a compact manifold, $f:M\to N$ is an immersion, $h$ and $k$ are tangent vectors to $f$ in the space of immersions, $f^*\bar{g}$ is the induced Riemannian metric on $M$, $vol(f^*\bar{g})$ is the induced volume density on $M$, $Vol(f)=\int_M vol(f^*\bar{g})$, $\Phi_i$ are positive real-valued functions, and $(P_i)_f$ are operators like some power of the Laplacian $\Delta^{f^*\bar{g}}$. We derive the geodesic equations for these metrics and show that they are sometimes well-posed with the geodesic exponential mapping a local diffeomorphism. The new aspect here are the weights $\Phi_i(Vol(f))$ which we use to construct scale invariant metrics and order 0 metrics with positive geodesic distance. We treat several concrete special cases in detail.
Citation: Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365
References:
[1]

M. Bauer and M. Bruveris, A new Riemannian setting for surface registration,, 3nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, (2011), 182.   Google Scholar

[2]

M. Bauer, M. Bruveris, C. Cotter, S. Marsland and P. W. Michor, Constructing reparametrization invariant metrics on spaces of plane curves,, \arXiv{1207.5965}., ().   Google Scholar

[3]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the riemannian metric with geodesic equation the KdV-equation,, Ann. Global Analysis Geom., 41 (2012), 461.  doi: 10.1007/s10455-011-9294-9.  Google Scholar

[4]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group,, Ann. Glob. Anal. Geom., ().  doi: doi:10.1007/s10455-012-9353-x.  Google Scholar

[5]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM J. Imaging Sci., 5 (2012), 244.  doi: 10.1137/100807983.  Google Scholar

[6]

M. Bauer, P. Harms and P. W. Michor, Curvature weighted metrics on shape space of hypersurfaces in n-space,, Differential Geometry and its Applications, 30 (2012), 33.  doi: 10.1016/j.difgeo.2011.10.002.  Google Scholar

[7]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3 (2011), 389.   Google Scholar

[8]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, To appear in, ().   Google Scholar

[9]

M. Bauer, "Almost Local Metrics on Shape Space of Surfaces,", Ph.D thesis, (2010).   Google Scholar

[10]

A. L. Besse, "Einstein Manifolds,", Classics in Mathematics. Springer-Verlag, (2008).   Google Scholar

[11]

P. Harms, "Sobolev Metrics on Shape Space of Surfaces,", Ph.D Thesis, (2010).   Google Scholar

[12]

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.   Google Scholar

[13]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.  doi: 10.4171/JEMS/37.  Google Scholar

[14]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[15]

J. Peetre, Une caractérisation abstraite des opérateurs différentiels,, Math. Scand., 7 (1959), 211.   Google Scholar

[16]

J. Peetre, Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels",, Math. Scand., 8 (1960), 116.   Google Scholar

[17]

J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123.   Google Scholar

[18]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,", Springer Series in Soviet Mathematics. Springer-Verlag, (1987).  doi: 10.1007/978-3-642-96854-9.  Google Scholar

[19]

Jan Slovák, Peetre theorem for nonlinear operators,, Ann. Global Anal. Geom., 6 (1988), 273.  doi: 10.1007/BF00054575.  Google Scholar

[20]

A. Yezzi and A. Mennucci, Conformal riemannian metrics in space of curves,, EUSIPCO, (2004).   Google Scholar

[21]

A. Yezzi and A. Mennucci, Metrics in the space of curves,, \arXiv{math/0412454}, (2004).   Google Scholar

[22]

A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves,, in, 1 (2005), 913.   Google Scholar

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Rend. Lincei Mat. Appl., 9 (2008), 25.  doi: 10.4171/RLM/506.  Google Scholar

show all references

References:
[1]

M. Bauer and M. Bruveris, A new Riemannian setting for surface registration,, 3nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, (2011), 182.   Google Scholar

[2]

M. Bauer, M. Bruveris, C. Cotter, S. Marsland and P. W. Michor, Constructing reparametrization invariant metrics on spaces of plane curves,, \arXiv{1207.5965}., ().   Google Scholar

[3]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the riemannian metric with geodesic equation the KdV-equation,, Ann. Global Analysis Geom., 41 (2012), 461.  doi: 10.1007/s10455-011-9294-9.  Google Scholar

[4]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group,, Ann. Glob. Anal. Geom., ().  doi: doi:10.1007/s10455-012-9353-x.  Google Scholar

[5]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM J. Imaging Sci., 5 (2012), 244.  doi: 10.1137/100807983.  Google Scholar

[6]

M. Bauer, P. Harms and P. W. Michor, Curvature weighted metrics on shape space of hypersurfaces in n-space,, Differential Geometry and its Applications, 30 (2012), 33.  doi: 10.1016/j.difgeo.2011.10.002.  Google Scholar

[7]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3 (2011), 389.   Google Scholar

[8]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, To appear in, ().   Google Scholar

[9]

M. Bauer, "Almost Local Metrics on Shape Space of Surfaces,", Ph.D thesis, (2010).   Google Scholar

[10]

A. L. Besse, "Einstein Manifolds,", Classics in Mathematics. Springer-Verlag, (2008).   Google Scholar

[11]

P. Harms, "Sobolev Metrics on Shape Space of Surfaces,", Ph.D Thesis, (2010).   Google Scholar

[12]

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.   Google Scholar

[13]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.  doi: 10.4171/JEMS/37.  Google Scholar

[14]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[15]

J. Peetre, Une caractérisation abstraite des opérateurs différentiels,, Math. Scand., 7 (1959), 211.   Google Scholar

[16]

J. Peetre, Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels",, Math. Scand., 8 (1960), 116.   Google Scholar

[17]

J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123.   Google Scholar

[18]

M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,", Springer Series in Soviet Mathematics. Springer-Verlag, (1987).  doi: 10.1007/978-3-642-96854-9.  Google Scholar

[19]

Jan Slovák, Peetre theorem for nonlinear operators,, Ann. Global Anal. Geom., 6 (1988), 273.  doi: 10.1007/BF00054575.  Google Scholar

[20]

A. Yezzi and A. Mennucci, Conformal riemannian metrics in space of curves,, EUSIPCO, (2004).   Google Scholar

[21]

A. Yezzi and A. Mennucci, Metrics in the space of curves,, \arXiv{math/0412454}, (2004).   Google Scholar

[22]

A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves,, in, 1 (2005), 913.   Google Scholar

[23]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Rend. Lincei Mat. Appl., 9 (2008), 25.  doi: 10.4171/RLM/506.  Google Scholar

[1]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[4]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[8]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[9]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[10]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[11]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[12]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[13]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[14]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[19]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (14)

Other articles
by authors

[Back to Top]