    December  2012, 4(4): 365-383. doi: 10.3934/jgm.2012.4.365

## Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics

 1 Fakultät f¨ur Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Austria 2 EdLabs, Harvard University, 44 Brattle Street, Cambridge, MA 02138

Received  September 2011 Revised  May 2012 Published  January 2013

In continuation of  we discuss metrics of the form $G^P_f(h,k)=\int_M \sum_{i=0}^p\Phi_i\big(Vol(f)\big)\ \bar{g}\big((P_i)_fh,k\big) vol(f^*\bar{g})$ on the space of immersions $Imm(M,N)$ and on shape space $B_i(M,N)=Imm(M,N)/{Diff}(M)$. Here $(N,\bar{g})$ is a complete Riemannian manifold, $M$ is a compact manifold, $f:M\to N$ is an immersion, $h$ and $k$ are tangent vectors to $f$ in the space of immersions, $f^*\bar{g}$ is the induced Riemannian metric on $M$, $vol(f^*\bar{g})$ is the induced volume density on $M$, $Vol(f)=\int_M vol(f^*\bar{g})$, $\Phi_i$ are positive real-valued functions, and $(P_i)_f$ are operators like some power of the Laplacian $\Delta^{f^*\bar{g}}$. We derive the geodesic equations for these metrics and show that they are sometimes well-posed with the geodesic exponential mapping a local diffeomorphism. The new aspect here are the weights $\Phi_i(Vol(f))$ which we use to construct scale invariant metrics and order 0 metrics with positive geodesic distance. We treat several concrete special cases in detail.
Citation: Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365
##### References:
  M. Bauer and M. Bruveris, A new Riemannian setting for surface registration,, 3nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, (2011), 182.   Google Scholar  M. Bauer, M. Bruveris, C. Cotter, S. Marsland and P. W. Michor, Constructing reparametrization invariant metrics on spaces of plane curves,, \arXiv{1207.5965}., ().   Google Scholar  M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the riemannian metric with geodesic equation the KdV-equation,, Ann. Global Analysis Geom., 41 (2012), 461.  doi: 10.1007/s10455-011-9294-9.  Google Scholar  M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group,, Ann. Glob. Anal. Geom., ().  doi: doi:10.1007/s10455-012-9353-x. Google Scholar  M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM J. Imaging Sci., 5 (2012), 244.  doi: 10.1137/100807983.  Google Scholar  M. Bauer, P. Harms and P. W. Michor, Curvature weighted metrics on shape space of hypersurfaces in n-space,, Differential Geometry and its Applications, 30 (2012), 33.  doi: 10.1016/j.difgeo.2011.10.002.  Google Scholar  M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3 (2011), 389. Google Scholar  M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, To appear in, ().   Google Scholar  M. Bauer, "Almost Local Metrics on Shape Space of Surfaces,", Ph.D thesis, (2010).   Google Scholar  A. L. Besse, "Einstein Manifolds,", Classics in Mathematics. Springer-Verlag, (2008). Google Scholar  P. Harms, "Sobolev Metrics on Shape Space of Surfaces,", Ph.D Thesis, (2010).   Google Scholar  P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217. Google Scholar  P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.  doi: 10.4171/JEMS/37.  Google Scholar  P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar  J. Peetre, Une caractérisation abstraite des opérateurs différentiels,, Math. Scand., 7 (1959), 211. Google Scholar  J. Peetre, Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels",, Math. Scand., 8 (1960), 116. Google Scholar  J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123. Google Scholar  M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,", Springer Series in Soviet Mathematics. Springer-Verlag, (1987).  doi: 10.1007/978-3-642-96854-9.  Google Scholar  Jan Slovák, Peetre theorem for nonlinear operators,, Ann. Global Anal. Geom., 6 (1988), 273.  doi: 10.1007/BF00054575.  Google Scholar  A. Yezzi and A. Mennucci, Conformal riemannian metrics in space of curves,, EUSIPCO, (2004).   Google Scholar  A. Yezzi and A. Mennucci, Metrics in the space of curves,, \arXiv{math/0412454}, (2004).   Google Scholar  A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves,, in, 1 (2005), 913.   Google Scholar  L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Rend. Lincei Mat. Appl., 9 (2008), 25.  doi: 10.4171/RLM/506.  Google Scholar

show all references

##### References:
  M. Bauer and M. Bruveris, A new Riemannian setting for surface registration,, 3nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, (2011), 182.   Google Scholar  M. Bauer, M. Bruveris, C. Cotter, S. Marsland and P. W. Michor, Constructing reparametrization invariant metrics on spaces of plane curves,, \arXiv{1207.5965}., ().   Google Scholar  M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the riemannian metric with geodesic equation the KdV-equation,, Ann. Global Analysis Geom., 41 (2012), 461.  doi: 10.1007/s10455-011-9294-9.  Google Scholar  M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group,, Ann. Glob. Anal. Geom., ().  doi: doi:10.1007/s10455-012-9353-x. Google Scholar  M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM J. Imaging Sci., 5 (2012), 244.  doi: 10.1137/100807983.  Google Scholar  M. Bauer, P. Harms and P. W. Michor, Curvature weighted metrics on shape space of hypersurfaces in n-space,, Differential Geometry and its Applications, 30 (2012), 33.  doi: 10.1016/j.difgeo.2011.10.002.  Google Scholar  M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, Journal of Geometric Mechanics, 3 (2011), 389. Google Scholar  M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, To appear in, ().   Google Scholar  M. Bauer, "Almost Local Metrics on Shape Space of Surfaces,", Ph.D thesis, (2010).   Google Scholar  A. L. Besse, "Einstein Manifolds,", Classics in Mathematics. Springer-Verlag, (2008). Google Scholar  P. Harms, "Sobolev Metrics on Shape Space of Surfaces,", Ph.D Thesis, (2010).   Google Scholar  P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217. Google Scholar  P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1.  doi: 10.4171/JEMS/37.  Google Scholar  P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar  J. Peetre, Une caractérisation abstraite des opérateurs différentiels,, Math. Scand., 7 (1959), 211. Google Scholar  J. Peetre, Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels",, Math. Scand., 8 (1960), 116. Google Scholar  J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123. Google Scholar  M. A. Shubin, "Pseudodifferential Operators and Spectral Theory,", Springer Series in Soviet Mathematics. Springer-Verlag, (1987).  doi: 10.1007/978-3-642-96854-9.  Google Scholar  Jan Slovák, Peetre theorem for nonlinear operators,, Ann. Global Anal. Geom., 6 (1988), 273.  doi: 10.1007/BF00054575.  Google Scholar  A. Yezzi and A. Mennucci, Conformal riemannian metrics in space of curves,, EUSIPCO, (2004).   Google Scholar  A. Yezzi and A. Mennucci, Metrics in the space of curves,, \arXiv{math/0412454}, (2004).   Google Scholar  A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves,, in, 1 (2005), 913.   Google Scholar  L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Rend. Lincei Mat. Appl., 9 (2008), 25.  doi: 10.4171/RLM/506.  Google Scholar
  Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382  Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248  Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049  Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364  Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463  Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031  Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350  Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459  Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336  Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263  Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250  Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117  Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469  Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267  Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136  Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345  Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384  Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317  Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079  Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 0.649