December  2012, 4(4): 385-395. doi: 10.3934/jgm.2012.4.385

Semi-simple generalized Nijenhuis operators

1. 

Univ. Montpellier 2, I3M UMR CNRS 5149, F-34095 Montpellier, France

2. 

Univ. Perpignan Via Domitia, LAboratoire de Mathmatiques et PhySique, EA 4217, F-66860 Perpignan, France

Received  December 2011 Revised  June 2012 Published  January 2013

We study a special class of endomorphism fields of the generalized tangent bundle ${\mathcal{T}}M:=TM\oplus T^*M$ of a smooth manifold $M$. An operator of this class is defined as follows: it has a vanishing Courant-Nijenhuis torsion and is diagonalizable (after a possible extension of scalars) with constant dimensions of its eigenspaces. Such an endomorphism field is called a semi-simple generalized Nijenhuis operator. The generalized paracomplex and complex structures give examples of such operators.
    In this study, we distinguish two cases according to whether the operator has exactly two eigenvalues or has at least three elements in its spectrum. In the first case, we prove that either the operator is affinely related to a generalized complex structure, or it is equivalent to a pair of transverse Dirac structures on ${\mathcal{T}}M$. In the second case, the semi-simple generalized Nijenhuis operator is conjugate to a special kind of generalized Nijenhuis operator obtained from usual Nijenhuis tensors.
Citation: Hassan Boualem, Robert Brouzet. Semi-simple generalized Nijenhuis operators. Journal of Geometric Mechanics, 2012, 4 (4) : 385-395. doi: 10.3934/jgm.2012.4.385
References:
[1]

J. Cariñena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions,, J. Phys. A, 37 (2004), 5189.  doi: 10.1088/0305-4470/37/19/006.  Google Scholar

[2]

V. Cruceanu, P. Fortuny and P. M. Gadea, Survey on paracomplex geometry,, The Rocky Mountain J. of Math., 26 (1996), 83.  doi: 10.1216/rmjm/1181072105.  Google Scholar

[3]

T. Courant, Dirac manifolds,, Trans. Am. Math. Soc., 319 (1990), 631.  doi: 10.2307/2001258.  Google Scholar

[4]

T. Courant and A. Weinstein, Beyond Poisson structures,, Travaux en Cours, 27 (1988), 39.   Google Scholar

[5]

M. Crainic, Generalized complex structures and Lie brackets,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 559.  doi: 10.1007/s00574-011-0029-0.  Google Scholar

[6]

A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms I,, Indag. Math., 18 (1956), 338.   Google Scholar

[7]

J. Grabowski, Courant-Nijenhuis tensor and generalized geometries,, Monogr. Real Acad. Ci. Exact. Fis.-Quim. Nat. Zaragoza, 29 (2006), 101.   Google Scholar

[8]

M. Gualtieri, "Generalized Complex Geometry,", Ph.D Thesis, (2003).   Google Scholar

[9]

N. Hitchin, Generalized Calabi-Yau manifolds,, Quart. J. Math., 54 (2003), 281.  doi: 10.1093/qjmath/54.3.281.  Google Scholar

[10]

Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids,, Bull. Braz. Math. Soc., 42 (2011), 625.  doi: 10.1007/s00574-011-0032-5.  Google Scholar

[11]

P. Libermann, Sur les structures presque paracomplexes,, C. R. Acad. Sci. Paris, 234 (1952), 2517.   Google Scholar

[12]

Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie algebroids,, J. Differential Geometry, 45 (1997), 547.   Google Scholar

[13]

A. Nijenhuis, Jacobi-type identities for bilinear concomitants of certain tensor fields,, Indag. Math. A, 58 (1955), 390.   Google Scholar

[14]

A. Wade, Dirac structures and paracomplex manifolds,, C. R. Acad. Sci. Paris, 338 (2004), 889.  doi: 10.1016/j.crma.2004.03.031.  Google Scholar

show all references

References:
[1]

J. Cariñena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions,, J. Phys. A, 37 (2004), 5189.  doi: 10.1088/0305-4470/37/19/006.  Google Scholar

[2]

V. Cruceanu, P. Fortuny and P. M. Gadea, Survey on paracomplex geometry,, The Rocky Mountain J. of Math., 26 (1996), 83.  doi: 10.1216/rmjm/1181072105.  Google Scholar

[3]

T. Courant, Dirac manifolds,, Trans. Am. Math. Soc., 319 (1990), 631.  doi: 10.2307/2001258.  Google Scholar

[4]

T. Courant and A. Weinstein, Beyond Poisson structures,, Travaux en Cours, 27 (1988), 39.   Google Scholar

[5]

M. Crainic, Generalized complex structures and Lie brackets,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 559.  doi: 10.1007/s00574-011-0029-0.  Google Scholar

[6]

A. Frölicher and A. Nijenhuis, Theory of vector-valued differential forms I,, Indag. Math., 18 (1956), 338.   Google Scholar

[7]

J. Grabowski, Courant-Nijenhuis tensor and generalized geometries,, Monogr. Real Acad. Ci. Exact. Fis.-Quim. Nat. Zaragoza, 29 (2006), 101.   Google Scholar

[8]

M. Gualtieri, "Generalized Complex Geometry,", Ph.D Thesis, (2003).   Google Scholar

[9]

N. Hitchin, Generalized Calabi-Yau manifolds,, Quart. J. Math., 54 (2003), 281.  doi: 10.1093/qjmath/54.3.281.  Google Scholar

[10]

Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids,, Bull. Braz. Math. Soc., 42 (2011), 625.  doi: 10.1007/s00574-011-0032-5.  Google Scholar

[11]

P. Libermann, Sur les structures presque paracomplexes,, C. R. Acad. Sci. Paris, 234 (1952), 2517.   Google Scholar

[12]

Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie algebroids,, J. Differential Geometry, 45 (1997), 547.   Google Scholar

[13]

A. Nijenhuis, Jacobi-type identities for bilinear concomitants of certain tensor fields,, Indag. Math. A, 58 (1955), 390.   Google Scholar

[14]

A. Wade, Dirac structures and paracomplex manifolds,, C. R. Acad. Sci. Paris, 338 (2004), 889.  doi: 10.1016/j.crma.2004.03.031.  Google Scholar

[1]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[2]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[3]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[4]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[5]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[6]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[10]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[11]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[12]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[13]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[14]

Junchao Zhou, Yunge Xu, Lisha Wang, Nian Li. Nearly optimal codebooks from generalized Boolean bent functions over $ \mathbb{Z}_{4} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020121

[15]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[16]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[17]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[18]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[19]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[20]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]