\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Lagrangian dynamics of submanifolds. Relativistic mechanics

Abstract Related Papers Cited by
  • Geometric formulation of Lagrangian relativistic mechanics in the terms of jets of one-dimensional submanifolds is generalized to Lagrangian theory of submanifolds of arbitrary dimension.
    Mathematics Subject Classification: Primary: 58A20, 70H40; Secondary: 83A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Echeverría Enríquez, M. Muñoz Lecanda and N. Román Roy, Geometrical setting of time-dependent regular systems. Alternative models, Reviews in Mathematical Physica, 3 (1991), 301-330.doi: 10.1142/S0129055X91000114.

    [2]

    G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory," World Scientific Publishing Co., Inc., River Edge, NJ, 1997.

    [3]

    G. Giachetta, L. Mangiarotti and G. Sardanashvily, On the notion of gauge symmetries of generic Lagrangian field theory, Journal of Mathematical Physics, 50 (2009), 012903, 19 pp.

    [4]

    G. Giachetta, L. Mangiarotti and G. Sardanashvily, "Advanced Classical Field Theory," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.

    [5]

    G. Giachetta, L. Mangiarotti and G. Sardanashvily, "Geometric Formulation of Classical and Quantum Mechanics," World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2010.

    [6]

    I. Krasil'shchik, V. Lychagin and A. Vinogradov, "Geometry of Jet Spaces and Nonlinear Partial Differential Equations," Gordon and Breach, Glasgow, 1985.

    [7]

    M. De León and P. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics," North-Holland, Amsterdam, 1989.

    [8]

    L. Mangiarotti and G. Sardanashvily, "Gauge Mechanics," World Scientific Publishing Co., Inc., River Edge, NJ, 1998.

    [9]

    M. Modugno and A. Vinogradov, Some variations on the notion of connections, Annali di Matematica Pura ed Applicata, CLXVII (1994), 33-71.doi: 10.1007/BF01760328.

    [10]

    J. Polchinski, "String Theory," Cambridge University Press, Cambridge, 1998.

    [11]

    G. Sardanashvily, Hamiltonian time-dependent mechanics, Journal of Mathematical Physics, 39 (1998), 2714-2729.doi: 10.1063/1.532416.

    [12]

    G. Sardanashvily, Relativistic mechanics in a general setting, International Journal of Geometric Methods in Modern Physics, 7 (2010), 1307-1319.doi: 10.1142/S0219887810004804.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(147) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return