Advanced Search
Article Contents
Article Contents

Leibniz-Dirac structures and nonconservative systems with constraints

Abstract Related Papers Cited by
  • Although conservative Hamiltonian systems with constraints can be formulated in terms of Dirac structures, a more general framework is necessary to cover also dissipative systems such as gradient and metriplectic systems with constraints. We define Leibniz-Dirac structures which lead to a natural generalization of Dirac and Riemannian structures, for instance. From modeling point of view, Leibniz-Dirac structures make it easy to formulate implicit dissipative Hamiltonian systems. We give their exact characterization in terms of vector bundle maps from the tangent bundle to the cotangent bundle and vice verse. Physical systems which can be formulated in terms of Leibniz-Dirac structures are discussed.
    Mathematics Subject Classification: 53D05, 70F25, 70G45.


    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham J. E. Marsden and T. Ratiu, "Manifolds, Tensor Analysis, and Applications," Second edition, Applied Mathematical Sciences, 75, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4612-1029-0.


    P. Balseiro, M. de León, J. C. Marrero and D. Martín de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics, J. Geom. Mech., 1 (2009), 1-34.doi: 10.3934/jgm.2009.1.1.


    G. Blankenstein, A joined geometric structure for Hamiltonian and gradient control systems, in "Lagrangian and Hamiltonian Methods for Nonlinear Control 2003," IFAC, Laxenburg, (2003), 51-56.


    G. Blankenstein, Geometric modeling of nonlinear RLC circuits, IEEE Trans. Circuits Syst. I Regul. Pap., 52 (2005), 396-404.doi: 10.1109/TCSI.2004.840481.


    A. Bloch, P. S. Krishnaprasad, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and double bracket dissipation, Comm. Math. Phys., 175 (1996), 1-42.doi: 10.1007/BF02101622.


    F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems," Texts in Applied Mathematics, 49, Springer-Verlag, New York, 2005.


    H. Bursztyn and O. Radko, Gauge equivalence of Dirac structures and symplectic groupoids, Ann. Inst. Fourier (Grenoble), 53 (2003), 309-337.doi: 10.5802/aif.1945.


    H. Bursztyn, G. R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Adv. Math., 211 (2007), 726-765.doi: 10.1016/j.aim.2006.09.008.


    H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets, J. Math. Phys., 47 (2006), 022902, 29 pp.doi: 10.1063/1.2165797.


    P. E. Crouch, Geometric structures in systems theory, Proceedings IEE-D, 128 (1981), 242-252.doi: 10.1049/ip-d.1981.0051.


    T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.doi: 10.1090/S0002-9947-1990-0998124-1.


    M. Dalsmo and A. van der Schaft, On representations and integrability of mathematical structures in energy-conserving physical systems, SIAM J. Control Optim., 37 (1999), 54-91.doi: 10.1137/S0363012996312039.


    J. Grabowski and P. Urbański, Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40 (1997), 195-208.doi: 10.1016/S0034-4877(97)85916-2.


    J. Grabowski and P. Urbański, Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111-141.doi: 10.1016/S0393-0440(99)00007-8.


    M. Gualtieri, Generalized complex geometry, Ann. of Math. (2), 174 (2011), 75-123.doi: 10.4007/annals.2011.174.1.3.


    M. Jotz and T. S. Ratiu, Dirac structures, nonholonomic systems and reduction, Rep. Math. Phys., 69 (2012), 5-56.doi: 10.1016/S0034-4877(12)60016-0.


    Z. Liu, A. Weinstein and P. Xu, Manin triples for Lie bialgebroids, J. Differ. Geom., 45 (1997), 547-574.


    P. J. Morrison, A paradigm for joined Hamiltonian and dissipative systems, Phys. D, 18 (1986), 410-419.doi: 10.1016/0167-2789(86)90209-5.


    S. Q. H. Nguyen and L. A. Turski, On the Dirac approach to constrained dissipative dynamics, J. Phys. A, 34 (2001), 9281-9302.doi: 10.1088/0305-4470/34/43/312.


    J.-P. Ortega and V. Planas-Bielsa, Dynamics on Leibniz manifolds, J. Geom. Phys., 52 (2004), 1-27.doi: 10.1016/j.geomphys.2004.01.002.


    A. J. van der Schaft, Implicit Hamiltonian systems with symmetry, Rep. Math. Phys., 41 (1998), 203-221.doi: 10.1016/S0034-4877(98)80176-6.


    A. J. van der Schaft, "$L_2$-gain and Passivity Techniques in Nonlinear Control," Second edition, Communications and Control Engineering Series, Springer-Verlag London, Ltd., London, 2000.doi: 10.1007/978-1-4471-0507-7.


    A. J. van der Schaft and B. M. Maschke, Port-Hamiltonian systems on graphs, SIAM J. Control Optim., 51 (2013), 906-937.doi: 10.1137/110840091.

  • 加载中

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint