June  2013, 5(2): 185-213. doi: 10.3934/jgm.2013.5.185

The supergeometry of Loday algebroids

1. 

Polish Academy of Sciences, Institute of Mathematics, Śniadeckich 8, P.O. Box 21, 00-956 Warsaw, Poland

2. 

University of Luxembourg, Campus Kirchberg, Mathematics Research Unit, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg City, Luxembourg, Luxembourg

Received  June 2012 Revised  April 2013 Published  July 2013

A new concept of Loday algebroid (and its pure algebraic version -- Loday pseudoalgebra) is proposed and discussed in comparison with other similar structures present in the literature. The structure of a Loday pseudoalgebra and its natural reduction to a Lie pseudoalgebra is studied. Further, Loday algebroids are interpreted as homological vector fields on a `supercommutative manifold' associated with a shuffle product and the corresponding Cartan calculus is introduced. Several examples, including Courant algebroids, Grassmann-Dorfman and twisted Courant-Dorfman brackets, as well as algebroids induced by Nambu-Poisson structures, are given.
Citation: Janusz Grabowski, David Khudaverdyan, Norbert Poncin. The supergeometry of Loday algebroids. Journal of Geometric Mechanics, 2013, 5 (2) : 185-213. doi: 10.3934/jgm.2013.5.185
References:
[1]

M. Ammar and N. Poncin, Coalgebraic approach to the loday infinity category, stem differential for 2n-ary graded and homotopy algebras, Ann. Inst. Fourier, 60 (2010), 355-387. doi: 10.5802/aif.2525.  Google Scholar

[2]

D. Baraglia, Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys., 62 (2012), 903-934. doi: 10.1016/j.geomphys.2012.01.007.  Google Scholar

[3]

Y. Bi and Y. Sheng, On higher analogues of Courant algebroid, Sci. China Math., 54 (2011), 437-447. doi: 10.1007/s11425-010-4142-0.  Google Scholar

[4]

G. Bonavolontà and N. Poncin, On the category of Lie $n$-algebroids,, , ().   Google Scholar

[5]

T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661. doi: 10.2307/2001258.  Google Scholar

[6]

I. Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246. doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[7]

V. Drinfel'd, Quantum groups, in "Proceedings of the International Congress of Mathematicians, Vol. 1, 2" (Berkeley, Calif., 1986), American Mathematical Society, Providence, RI, 1987.  Google Scholar

[8]

S. Eilenberg and S. Mac Lane, On the groups of $H(\Pi,n)$. I, Ann. of Math., 58 (1953), 55-106. Google Scholar

[9]

V. T. Filippov, $n$-Lie algebras, Sibirsk. Math. Zh., 26 (1985), 126-140, 191.  Google Scholar

[10]

D. García-Beltrán and J. A. Vallejo, An approach to omni-Lie algebroids using quasi-derivations, J. Gen. Lie Theory Appl., 5 (2011), Art. ID G100801, 10 pp. doi: 10.4303/jglta/G100801.  Google Scholar

[11]

V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J., 76 (1994), 203-272. doi: 10.1215/S0012-7094-94-07608-4.  Google Scholar

[12]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A, 41 (2008), 175204, 25 pp. doi: 10.1088/1751-8113/41/17/175204.  Google Scholar

[13]

K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics, J. Geom. Phys., 61 (2011), 2233-2253. doi: 10.1016/j.geomphys.2011.06.018.  Google Scholar

[14]

K. Grabowska, J. Grabowski and P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559-575. doi: 10.1142/S0219887806001259.  Google Scholar

[15]

J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geom. Phys., 9 (1992), 45-73. doi: 10.1016/0393-0440(92)90025-V.  Google Scholar

[16]

J. Grabowski, Quasi-derivations and QD-algebroids, Rep. Math. Phys., 32 (2003), 445-451. doi: 10.1016/S0034-4877(03)80041-1.  Google Scholar

[17]

J. Grabowski, Graded contact manifolds and contact Courant algebroids, J. Geom. Phys., 68 (2013), 27-28. doi: 10.1016/j.geomphys.2013.02.001.  Google Scholar

[18]

J. Grabowski, Brackets,, to appear in Int. J. Geom. Methods Mod. Phys., ().   Google Scholar

[19]

J. Grabowski, M. de León, D. Martín de Diego and J. C. Marrero, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17 pp. doi: 10.1063/1.3049752.  Google Scholar

[20]

J. Grabowski and G. Marmo, Non-antisymmetric versions of Nambu-Poisson and Lie algebroid brackets, J. Phys. A, 34 (2001), 3803-3809. doi: 10.1088/0305-4470/34/18/308.  Google Scholar

[21]

J. Grabowski and G. Marmo, Binary operations in classical and quantum mechanics, in "Classical and Quantum Integrability" (eds. J. Grabowski and P. Urbański), Banach Center Publ., 59, Polish Acad. Sci., Warsaw, (2003), 163-172. doi: 10.4064/bc59-0-8.  Google Scholar

[22]

J. Grabowski and G. Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A, Math. Gen., 36 (2003), 161-181. doi: 10.1088/0305-4470/36/1/311.  Google Scholar

[23]

J. Grabowski and N. Poncin, Automorphisms of quantum and classical Poisson algebras, Compositio Math., 140 (2004), 511-527. doi: 10.1112/S0010437X0300006X.  Google Scholar

[24]

J. Grabowski and P. Urbański, Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111-141. doi: 10.1016/S0393-0440(99)00007-8.  Google Scholar

[25]

J. C. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris, 236 (1953), I, 1935-1937; II, 2289-2291. Google Scholar

[26]

Y. Hagiwara, Nambu-Dirac manifolds, J. Phys. A, 35 (2002), 1263-1281. doi: 10.1088/0305-4470/35/5/310.  Google Scholar

[27]

Y. Hagiwara and T. Mizutani, Leibniz algebras associated with foliations, Kodai Math. J., 25 (2002), 151-165. doi: 10.2996/kmj/1071674438.  Google Scholar

[28]

R. Ibáñez, M. de León, J. C. Marrero and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A, Math. Gen., 32 (1999), 8129-8144. doi: 10.1088/0305-4470/32/46/310.  Google Scholar

[29]

N. Jacobson, On pseudo-linear transformations, Proc. Nat. Acad. Sci., 21 (1935), 667-670. Google Scholar

[30]

N. Jacobson, Pseudo-linear transformations, Ann. Math., 38 (1937), 485-506. Google Scholar

[31]

D. Khudaverdian, A. Mandal and N. Poncin, Higher categorified algebras versus bounded homotopy algebras, Theo. Appl. Cat., 25 (2011), 251-275.  Google Scholar

[32]

A. A. Kirillov, Local Lie algebras, (Russian) Uspekhi Mat. Nauk, 31 (1976), 57-76.  Google Scholar

[33]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble), 46 (1996), 1243-1274. doi: 10.5802/aif.1547.  Google Scholar

[34]

Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys., 69 (2004), 61-87. Google Scholar

[35]

Y. Kosmann-Schwarzbach, Quasi, twisted, and all that$\ldots$in Poisson geometry and Lie algebroid theory, in "The Breadth of Symplectic and Poisson Geometry," {Progr. Math.,} 232, Birkhäuser Boston, Boston, MA, (2005), 363-389. doi: 10.1007/0-8176-4419-9_12.  Google Scholar

[36]

Y. Kosmann-Schwarzbach and K. Mackenzie, Differential operators and actions of Lie algebroids, in "Quantization, Poisson Brackets and Beyond" (ed. T. Voronov), Contemporary Math., 315, Amer. Math. Soc., Providence, RI, (2002), 213-233. doi: 10.1090/conm/315/05482.  Google Scholar

[37]

A. Kotov and T. Strobl, Generalizing geometry-algebroids and sigma models, in "Handbook of Pseudo-Riemannian Geometry and Supersymmetry," IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Zürich, (2010), 209-262. doi: 10.4171/079-1/7.  Google Scholar

[38]

A. Lichnerowicz, Algèbre de Lie des automorphismes infinitésimaux d'une structure unimodulaire, Ann. Inst. Fourier, 24 (1974), 219-266.  Google Scholar

[39]

Zhang-Ju Liu, A. Weinstein and Ping Xu, Manin triples for Lie bialgebroids, J. Diff. Geom., 45 (1997), 547-574.  Google Scholar

[40]

J.-L. Loday, "Cyclic Homology," Appendix E by María O. Ronco, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 301, Springer Verlag, Berlin, 1992.  Google Scholar

[41]

J.-L. Loday, Une version non commutative des algèbres de Lie, les algèbres de Leibniz, Ann. Inst. Fourier, 37 (1993), 269-293. Google Scholar

[42]

J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Annalen, 296 (1993), 139-158. doi: 10.1007/BF01445099.  Google Scholar

[43]

J. M. Lodder, Leibniz cohomology for differentiable manifolds, Ann. Inst. Fourier (Grenoble), 48 (1998), 73-75. Google Scholar

[44]

J. M. Lodder, Leibniz cohomology and the calculus of variations, Differential Geom. Appl., 21 (2004), 113-126. doi: 10.1016/j.difgeo.2004.03.010.  Google Scholar

[45]

K. C. H. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc., 27 (1995), 97-147. doi: 10.1112/blms/27.2.97.  Google Scholar

[46]

K. C. H. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids," London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005.  Google Scholar

[47]

K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415-452. doi: 10.1215/S0012-7094-94-07318-3.  Google Scholar

[48]

K. Mikami and T. Mizutani, Algebroids associated with pre-Poisson structures, in "Noncommutative Geometry and Physics 2005," World Sci. Publ., Hackensack, NJ, (2007), 71-96. doi: 10.1142/9789812779649_0004.  Google Scholar

[49]

E. Nelson, "Tensor Analysis," Princeton University Press, The University of Tokyo Press, Princeton, 1967. Google Scholar

[50]

J. P. Ortega and V. Planas-Bielsa, Dynamics on Leibniz manifolds, J. Geom. Phys., 52 (2004), 1-27. doi: 10.1016/j.geomphys.2004.01.002.  Google Scholar

[51]

J. Peetre, Une caractérisation abstraite des opérateurs différentiels, Math. Scand., 7 (1959), 211-218.  Google Scholar

[52]

J. Peetre, Réctifications á l'article "Une caractérisation abstraite des opératuers diffŕentiels," Math. Scand., 8 (1960), 116-120.  Google Scholar

[53]

J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris, Sér. A-B, 264 (1967), A245-A248.  Google Scholar

[54]

D. E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra, 58 (1979), 432-454. doi: 10.1016/0021-8693(79)90171-6.  Google Scholar

[55]

R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2), 68 (1958), 210-220. doi: 10.2307/1970243.  Google Scholar

[56]

R. Ree, Generalized Lie elements, Canad. J. Math., 12 (1960), 493-502. doi: 10.4153/CJM-1960-044-x.  Google Scholar

[57]

D. Roytenberg, "Courant Algebroids, Derived Brackets and Even Symplectic Supermanifolds," Ph.D. thesis, University of California, Berkeley, 1999.  Google Scholar

[58]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in "Quantization, Poisson Brackets and Beyond" (Manchester, 2001), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, (2002), 169-185. doi: 10.1090/conm/315/05479.  Google Scholar

[59]

P. Ševera and A. Weinstein, Poisson geometry with a 3-form background, Prog. Theor. Phys. Suppl., 144 (2001), 145-154. doi: 10.1143/PTPS.144.145.  Google Scholar

[60]

M. Stiénon and P. Xu, Modular classes of Loday algebroids, C. R. Acad. Sci. Paris, 346 (2008), 193-198. doi: 10.1016/j.crma.2007.12.012.  Google Scholar

[61]

K. Uchino, Remarks on the definition of a Courant algebroid, Lett. Math. Phys., 60 (2002), 171-175. doi: 10.1023/A,1016179410273.  Google Scholar

[62]

A. M. Vinogradov, The logic algebra for the theory of linear differential operators, Soviet. Mat. Dokl., 13 (1972), 1058-1062. Google Scholar

[63]

A. Wade, Conformal Dirac structures, Lett. Math. Phys., 53 (2000), 331-348. doi: 10.1023/A,1007634407701.  Google Scholar

[64]

A. Wade, On some properties of Leibniz algebroids, in "Infinite Dimensional Lie Groups in Geometry and Representation Theory" (Washington, DC, 2000), World Sci. Publ., River Edge, NJ, (2002), 65-78. doi: 10.1142/9789812777089_0005.  Google Scholar

[65]

M. Zambon, $L_\infty$-algebras and higher analogues of Dirac structures and Courant algebroids, J. Symplectic Geom., 10 (2012), 563-599.  Google Scholar

[66]

A. A. Zolotykh and A. A. Mikhalëv, The base of free shuffle superalgebras, (Russian) Uspekhi Mat. Nauk, 50 (1995), 199-200; translation in Russian Math. Surveys, 50 (1995), 225-226. doi: 10.1070/RM1995v050n01ABEH001681.  Google Scholar

show all references

References:
[1]

M. Ammar and N. Poncin, Coalgebraic approach to the loday infinity category, stem differential for 2n-ary graded and homotopy algebras, Ann. Inst. Fourier, 60 (2010), 355-387. doi: 10.5802/aif.2525.  Google Scholar

[2]

D. Baraglia, Leibniz algebroids, twistings and exceptional generalized geometry, J. Geom. Phys., 62 (2012), 903-934. doi: 10.1016/j.geomphys.2012.01.007.  Google Scholar

[3]

Y. Bi and Y. Sheng, On higher analogues of Courant algebroid, Sci. China Math., 54 (2011), 437-447. doi: 10.1007/s11425-010-4142-0.  Google Scholar

[4]

G. Bonavolontà and N. Poncin, On the category of Lie $n$-algebroids,, , ().   Google Scholar

[5]

T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661. doi: 10.2307/2001258.  Google Scholar

[6]

I. Y. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246. doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[7]

V. Drinfel'd, Quantum groups, in "Proceedings of the International Congress of Mathematicians, Vol. 1, 2" (Berkeley, Calif., 1986), American Mathematical Society, Providence, RI, 1987.  Google Scholar

[8]

S. Eilenberg and S. Mac Lane, On the groups of $H(\Pi,n)$. I, Ann. of Math., 58 (1953), 55-106. Google Scholar

[9]

V. T. Filippov, $n$-Lie algebras, Sibirsk. Math. Zh., 26 (1985), 126-140, 191.  Google Scholar

[10]

D. García-Beltrán and J. A. Vallejo, An approach to omni-Lie algebroids using quasi-derivations, J. Gen. Lie Theory Appl., 5 (2011), Art. ID G100801, 10 pp. doi: 10.4303/jglta/G100801.  Google Scholar

[11]

V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J., 76 (1994), 203-272. doi: 10.1215/S0012-7094-94-07608-4.  Google Scholar

[12]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A, 41 (2008), 175204, 25 pp. doi: 10.1088/1751-8113/41/17/175204.  Google Scholar

[13]

K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics, J. Geom. Phys., 61 (2011), 2233-2253. doi: 10.1016/j.geomphys.2011.06.018.  Google Scholar

[14]

K. Grabowska, J. Grabowski and P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559-575. doi: 10.1142/S0219887806001259.  Google Scholar

[15]

J. Grabowski, Abstract Jacobi and Poisson structures. Quantization and star-products, J. Geom. Phys., 9 (1992), 45-73. doi: 10.1016/0393-0440(92)90025-V.  Google Scholar

[16]

J. Grabowski, Quasi-derivations and QD-algebroids, Rep. Math. Phys., 32 (2003), 445-451. doi: 10.1016/S0034-4877(03)80041-1.  Google Scholar

[17]

J. Grabowski, Graded contact manifolds and contact Courant algebroids, J. Geom. Phys., 68 (2013), 27-28. doi: 10.1016/j.geomphys.2013.02.001.  Google Scholar

[18]

J. Grabowski, Brackets,, to appear in Int. J. Geom. Methods Mod. Phys., ().   Google Scholar

[19]

J. Grabowski, M. de León, D. Martín de Diego and J. C. Marrero, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17 pp. doi: 10.1063/1.3049752.  Google Scholar

[20]

J. Grabowski and G. Marmo, Non-antisymmetric versions of Nambu-Poisson and Lie algebroid brackets, J. Phys. A, 34 (2001), 3803-3809. doi: 10.1088/0305-4470/34/18/308.  Google Scholar

[21]

J. Grabowski and G. Marmo, Binary operations in classical and quantum mechanics, in "Classical and Quantum Integrability" (eds. J. Grabowski and P. Urbański), Banach Center Publ., 59, Polish Acad. Sci., Warsaw, (2003), 163-172. doi: 10.4064/bc59-0-8.  Google Scholar

[22]

J. Grabowski and G. Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A, Math. Gen., 36 (2003), 161-181. doi: 10.1088/0305-4470/36/1/311.  Google Scholar

[23]

J. Grabowski and N. Poncin, Automorphisms of quantum and classical Poisson algebras, Compositio Math., 140 (2004), 511-527. doi: 10.1112/S0010437X0300006X.  Google Scholar

[24]

J. Grabowski and P. Urbański, Algebroids-general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111-141. doi: 10.1016/S0393-0440(99)00007-8.  Google Scholar

[25]

J. C. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris, 236 (1953), I, 1935-1937; II, 2289-2291. Google Scholar

[26]

Y. Hagiwara, Nambu-Dirac manifolds, J. Phys. A, 35 (2002), 1263-1281. doi: 10.1088/0305-4470/35/5/310.  Google Scholar

[27]

Y. Hagiwara and T. Mizutani, Leibniz algebras associated with foliations, Kodai Math. J., 25 (2002), 151-165. doi: 10.2996/kmj/1071674438.  Google Scholar

[28]

R. Ibáñez, M. de León, J. C. Marrero and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A, Math. Gen., 32 (1999), 8129-8144. doi: 10.1088/0305-4470/32/46/310.  Google Scholar

[29]

N. Jacobson, On pseudo-linear transformations, Proc. Nat. Acad. Sci., 21 (1935), 667-670. Google Scholar

[30]

N. Jacobson, Pseudo-linear transformations, Ann. Math., 38 (1937), 485-506. Google Scholar

[31]

D. Khudaverdian, A. Mandal and N. Poncin, Higher categorified algebras versus bounded homotopy algebras, Theo. Appl. Cat., 25 (2011), 251-275.  Google Scholar

[32]

A. A. Kirillov, Local Lie algebras, (Russian) Uspekhi Mat. Nauk, 31 (1976), 57-76.  Google Scholar

[33]

Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble), 46 (1996), 1243-1274. doi: 10.5802/aif.1547.  Google Scholar

[34]

Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys., 69 (2004), 61-87. Google Scholar

[35]

Y. Kosmann-Schwarzbach, Quasi, twisted, and all that$\ldots$in Poisson geometry and Lie algebroid theory, in "The Breadth of Symplectic and Poisson Geometry," {Progr. Math.,} 232, Birkhäuser Boston, Boston, MA, (2005), 363-389. doi: 10.1007/0-8176-4419-9_12.  Google Scholar

[36]

Y. Kosmann-Schwarzbach and K. Mackenzie, Differential operators and actions of Lie algebroids, in "Quantization, Poisson Brackets and Beyond" (ed. T. Voronov), Contemporary Math., 315, Amer. Math. Soc., Providence, RI, (2002), 213-233. doi: 10.1090/conm/315/05482.  Google Scholar

[37]

A. Kotov and T. Strobl, Generalizing geometry-algebroids and sigma models, in "Handbook of Pseudo-Riemannian Geometry and Supersymmetry," IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Zürich, (2010), 209-262. doi: 10.4171/079-1/7.  Google Scholar

[38]

A. Lichnerowicz, Algèbre de Lie des automorphismes infinitésimaux d'une structure unimodulaire, Ann. Inst. Fourier, 24 (1974), 219-266.  Google Scholar

[39]

Zhang-Ju Liu, A. Weinstein and Ping Xu, Manin triples for Lie bialgebroids, J. Diff. Geom., 45 (1997), 547-574.  Google Scholar

[40]

J.-L. Loday, "Cyclic Homology," Appendix E by María O. Ronco, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 301, Springer Verlag, Berlin, 1992.  Google Scholar

[41]

J.-L. Loday, Une version non commutative des algèbres de Lie, les algèbres de Leibniz, Ann. Inst. Fourier, 37 (1993), 269-293. Google Scholar

[42]

J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Annalen, 296 (1993), 139-158. doi: 10.1007/BF01445099.  Google Scholar

[43]

J. M. Lodder, Leibniz cohomology for differentiable manifolds, Ann. Inst. Fourier (Grenoble), 48 (1998), 73-75. Google Scholar

[44]

J. M. Lodder, Leibniz cohomology and the calculus of variations, Differential Geom. Appl., 21 (2004), 113-126. doi: 10.1016/j.difgeo.2004.03.010.  Google Scholar

[45]

K. C. H. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc., 27 (1995), 97-147. doi: 10.1112/blms/27.2.97.  Google Scholar

[46]

K. C. H. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids," London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005.  Google Scholar

[47]

K. C. H. Mackenzie and P. Xu, Lie bialgebroids and Poisson groupoids, Duke Math. J., 73 (1994), 415-452. doi: 10.1215/S0012-7094-94-07318-3.  Google Scholar

[48]

K. Mikami and T. Mizutani, Algebroids associated with pre-Poisson structures, in "Noncommutative Geometry and Physics 2005," World Sci. Publ., Hackensack, NJ, (2007), 71-96. doi: 10.1142/9789812779649_0004.  Google Scholar

[49]

E. Nelson, "Tensor Analysis," Princeton University Press, The University of Tokyo Press, Princeton, 1967. Google Scholar

[50]

J. P. Ortega and V. Planas-Bielsa, Dynamics on Leibniz manifolds, J. Geom. Phys., 52 (2004), 1-27. doi: 10.1016/j.geomphys.2004.01.002.  Google Scholar

[51]

J. Peetre, Une caractérisation abstraite des opérateurs différentiels, Math. Scand., 7 (1959), 211-218.  Google Scholar

[52]

J. Peetre, Réctifications á l'article "Une caractérisation abstraite des opératuers diffŕentiels," Math. Scand., 8 (1960), 116-120.  Google Scholar

[53]

J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C. R. Acad. Sci. Paris, Sér. A-B, 264 (1967), A245-A248.  Google Scholar

[54]

D. E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes, J. Algebra, 58 (1979), 432-454. doi: 10.1016/0021-8693(79)90171-6.  Google Scholar

[55]

R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. (2), 68 (1958), 210-220. doi: 10.2307/1970243.  Google Scholar

[56]

R. Ree, Generalized Lie elements, Canad. J. Math., 12 (1960), 493-502. doi: 10.4153/CJM-1960-044-x.  Google Scholar

[57]

D. Roytenberg, "Courant Algebroids, Derived Brackets and Even Symplectic Supermanifolds," Ph.D. thesis, University of California, Berkeley, 1999.  Google Scholar

[58]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in "Quantization, Poisson Brackets and Beyond" (Manchester, 2001), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, (2002), 169-185. doi: 10.1090/conm/315/05479.  Google Scholar

[59]

P. Ševera and A. Weinstein, Poisson geometry with a 3-form background, Prog. Theor. Phys. Suppl., 144 (2001), 145-154. doi: 10.1143/PTPS.144.145.  Google Scholar

[60]

M. Stiénon and P. Xu, Modular classes of Loday algebroids, C. R. Acad. Sci. Paris, 346 (2008), 193-198. doi: 10.1016/j.crma.2007.12.012.  Google Scholar

[61]

K. Uchino, Remarks on the definition of a Courant algebroid, Lett. Math. Phys., 60 (2002), 171-175. doi: 10.1023/A,1016179410273.  Google Scholar

[62]

A. M. Vinogradov, The logic algebra for the theory of linear differential operators, Soviet. Mat. Dokl., 13 (1972), 1058-1062. Google Scholar

[63]

A. Wade, Conformal Dirac structures, Lett. Math. Phys., 53 (2000), 331-348. doi: 10.1023/A,1007634407701.  Google Scholar

[64]

A. Wade, On some properties of Leibniz algebroids, in "Infinite Dimensional Lie Groups in Geometry and Representation Theory" (Washington, DC, 2000), World Sci. Publ., River Edge, NJ, (2002), 65-78. doi: 10.1142/9789812777089_0005.  Google Scholar

[65]

M. Zambon, $L_\infty$-algebras and higher analogues of Dirac structures and Courant algebroids, J. Symplectic Geom., 10 (2012), 563-599.  Google Scholar

[66]

A. A. Zolotykh and A. A. Mikhalëv, The base of free shuffle superalgebras, (Russian) Uspekhi Mat. Nauk, 50 (1995), 199-200; translation in Russian Math. Surveys, 50 (1995), 225-226. doi: 10.1070/RM1995v050n01ABEH001681.  Google Scholar

[1]

Franz W. Kamber and Peter W. Michor. The flow completion of a manifold with vector field. Electronic Research Announcements, 2000, 6: 95-97.

[2]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2155-2185. doi: 10.3934/cpaa.2021062

[3]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[4]

Shengji Li, Xiaole Guo. Calculus rules of generalized $\epsilon-$subdifferential for vector valued mappings and applications. Journal of Industrial & Management Optimization, 2012, 8 (2) : 411-427. doi: 10.3934/jimo.2012.8.411

[5]

Moon Duchin, Tom Needham, Thomas Weighill. The (homological) persistence of gerrymandering. Foundations of Data Science, 2021  doi: 10.3934/fods.2021007

[6]

Robert Roussarie. A topological study of planar vector field singularities. Discrete & Continuous Dynamical Systems, 2020, 40 (9) : 5217-5245. doi: 10.3934/dcds.2020226

[7]

Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255

[8]

David Li-Bland, Pavol Ševera. Integration of exact Courant algebroids. Electronic Research Announcements, 2012, 19: 58-76. doi: 10.3934/era.2012.19.58

[9]

Mario Roldan. Hyperbolic sets and entropy at the homological level. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3417-3433. doi: 10.3934/dcds.2016.36.3417

[10]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[11]

Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098

[12]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[13]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[14]

Benoît Jubin, Norbert Poncin, Kyosuke Uchino. Free Courant and derived Leibniz pseudoalgebras. Journal of Geometric Mechanics, 2016, 8 (1) : 71-97. doi: 10.3934/jgm.2016.8.71

[15]

Nikolay A. Gusev. On the one-dimensional continuity equation with a nearly incompressible vector field. Communications on Pure & Applied Analysis, 2019, 18 (2) : 559-568. doi: 10.3934/cpaa.2019028

[16]

Angela Aguglia, Antonio Cossidente, Giuseppe Marino, Francesco Pavese, Alessandro Siciliano. Orbit codes from forms on vector spaces over a finite field. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020105

[17]

Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002

[18]

Sobhan Seyfaddini. Spectral killers and Poisson bracket invariants. Journal of Modern Dynamics, 2015, 9: 51-66. doi: 10.3934/jmd.2015.9.51

[19]

Biao Ou. Examinations on a three-dimensional differentiable vector field that equals its own curl. Communications on Pure & Applied Analysis, 2003, 2 (2) : 251-257. doi: 10.3934/cpaa.2003.2.251

[20]

Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control & Related Fields, 2021, 11 (2) : 403-431. doi: 10.3934/mcrf.2020042

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (8)

[Back to Top]