-
Previous Article
The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups
- JGM Home
- This Issue
-
Next Article
Multi-symplectic method to simulate Soliton resonance of (2+1)-dimensional Boussinesq equation
On Euler's equation and 'EPDiff'
1. | Division of Applied Mathematics, Brown University, Box F, Providence, RI 02912, United States |
2. | Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria |
References:
[1] |
Reprint of the 1972 edition. Dover Publications, Inc., New York, 1992. |
[2] |
Annales de L'Institut Fourier, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[3] |
SIAM Journal on Imaging Sciences, 5 (2012), 244-310.
doi: 10.1137/100807983. |
[4] |
Journal of Computational Physics, 93 (1991), 485.
doi: 10.1016/0021-9991(91)90198-T. |
[5] |
Physical Review Letters, 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[6] |
Springer-Verlag, 1994. |
[7] |
SIAM Journal on Scientific Computing, 19 (1998), 1290-1302.
doi: 10.1137/S1064827595293570. |
[8] |
Advances in Mathematics, 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[9] |
in "The Breadth of Symplectic and Poisson Geometry, A festschrift for Alan Weinstein," Progress in Mathematics, 232 (2004), 203-235.
doi: 10.1007/0-8176-4419-9_8. |
[10] |
Springer-Verlag, Berlin, 1983, Google Scholar |
[11] |
in "Springer Lecture Notes in Math.," 448 (1975), 27-50. |
[12] |
SIAM Journal on Imaging Sciences, 5 (2012), 394-433.
doi: 10.1137/10081678X. |
[13] |
Izvestiya: Mathematics, 77 (2013), 541-570.
doi: 10.1070/IM2013v077n03ABEH002648. |
[14] |
Documenta Mathematica, 10 (2005), 217-245. |
[15] |
Applied and Computational Harmonic Analysis, 23 (2007), 74-113.
doi: 10.1016/j.acha.2006.07.004. |
[16] |
Annals of Global Ananlysis and Geometry, (2013).
doi: 10.1007/s10455-013-9380-2. |
[17] |
Proceedings National Academy of Science, 90 (1993), 11944-11948.
doi: 10.1073/pnas.90.24.11944. |
[18] |
Annual Review of Biomedical Engineering, (2002), 375-405. Google Scholar |
[19] |
Communications of the Moscow Mathematical Society (1988). Translation in Russian Mathematics Surveys, 44 (1989), 210-211.
doi: 10.1070/RM1989v044n03ABEH002122. |
[20] |
Mathematika, 19 (1972), 169-179.
doi: 10.1112/S0025579300005611. |
[21] |
Springer, 2010. |
[22] |
SIAM Journal on Mathematical Analysis, 37 (2005), 17-59.
doi: 10.1137/S0036141002404838. |
[23] |
Springer, 171, 2010.
doi: 10.1007/978-3-642-12055-8. |
show all references
References:
[1] |
Reprint of the 1972 edition. Dover Publications, Inc., New York, 1992. |
[2] |
Annales de L'Institut Fourier, 16 (1966), 319-361.
doi: 10.5802/aif.233. |
[3] |
SIAM Journal on Imaging Sciences, 5 (2012), 244-310.
doi: 10.1137/100807983. |
[4] |
Journal of Computational Physics, 93 (1991), 485.
doi: 10.1016/0021-9991(91)90198-T. |
[5] |
Physical Review Letters, 71 (1993), 1661-1664.
doi: 10.1103/PhysRevLett.71.1661. |
[6] |
Springer-Verlag, 1994. |
[7] |
SIAM Journal on Scientific Computing, 19 (1998), 1290-1302.
doi: 10.1137/S1064827595293570. |
[8] |
Advances in Mathematics, 137 (1998), 1-81.
doi: 10.1006/aima.1998.1721. |
[9] |
in "The Breadth of Symplectic and Poisson Geometry, A festschrift for Alan Weinstein," Progress in Mathematics, 232 (2004), 203-235.
doi: 10.1007/0-8176-4419-9_8. |
[10] |
Springer-Verlag, Berlin, 1983, Google Scholar |
[11] |
in "Springer Lecture Notes in Math.," 448 (1975), 27-50. |
[12] |
SIAM Journal on Imaging Sciences, 5 (2012), 394-433.
doi: 10.1137/10081678X. |
[13] |
Izvestiya: Mathematics, 77 (2013), 541-570.
doi: 10.1070/IM2013v077n03ABEH002648. |
[14] |
Documenta Mathematica, 10 (2005), 217-245. |
[15] |
Applied and Computational Harmonic Analysis, 23 (2007), 74-113.
doi: 10.1016/j.acha.2006.07.004. |
[16] |
Annals of Global Ananlysis and Geometry, (2013).
doi: 10.1007/s10455-013-9380-2. |
[17] |
Proceedings National Academy of Science, 90 (1993), 11944-11948.
doi: 10.1073/pnas.90.24.11944. |
[18] |
Annual Review of Biomedical Engineering, (2002), 375-405. Google Scholar |
[19] |
Communications of the Moscow Mathematical Society (1988). Translation in Russian Mathematics Surveys, 44 (1989), 210-211.
doi: 10.1070/RM1989v044n03ABEH002122. |
[20] |
Mathematika, 19 (1972), 169-179.
doi: 10.1112/S0025579300005611. |
[21] |
Springer, 2010. |
[22] |
SIAM Journal on Mathematical Analysis, 37 (2005), 17-59.
doi: 10.1137/S0036141002404838. |
[23] |
Springer, 171, 2010.
doi: 10.1007/978-3-642-12055-8. |
[1] |
Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021063 |
[2] |
Kiyoshi Igusa, Gordana Todorov. Picture groups and maximal green sequences. Electronic Research Archive, , () : -. doi: 10.3934/era.2021025 |
[3] |
Siqi Chen, Yong-Kui Chang, Yanyan Wei. Pseudo $ S $-asymptotically Bloch type periodic solutions to a damped evolution equation. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021017 |
[4] |
Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341 |
[5] |
Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021056 |
[6] |
Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409 |
[7] |
Jean-François Biasse. Improvements in the computation of ideal class groups of imaginary quadratic number fields. Advances in Mathematics of Communications, 2010, 4 (2) : 141-154. doi: 10.3934/amc.2010.4.141 |
[8] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[9] |
Ying Sui, Huimin Yu. Singularity formation for compressible Euler equations with time-dependent damping. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021062 |
[10] |
Mao Okada. Local rigidity of certain actions of solvable groups on the boundaries of rank-one symmetric spaces. Journal of Modern Dynamics, 2021, 17: 111-143. doi: 10.3934/jmd.2021004 |
[11] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, 2021, 20 (3) : 995-1023. doi: 10.3934/cpaa.2021003 |
[12] |
Yunjuan Jin, Aifang Qu, Hairong Yuan. Radon measure solutions for steady compressible hypersonic-limit Euler flows passing cylindrically symmetric conical bodies. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021048 |
[13] |
Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015 |
[14] |
Z. Reichstein and B. Youssin. Parusinski's "Key Lemma" via algebraic geometry. Electronic Research Announcements, 1999, 5: 136-145. |
[15] |
Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404 |
[16] |
Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021077 |
[17] |
Jun Tu, Zijiao Sun, Min Huang. Supply chain coordination considering e-tailer's promotion effort and logistics provider's service effort. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021062 |
[18] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[19] |
Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617 |
[20] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]