-
Previous Article
Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms
- JGM Home
- This Issue
-
Next Article
On Euler's equation and 'EPDiff'
The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups
1. | Département de Mathématique, CP 218, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Bruxelles,, Belgium |
2. | Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago de Chile, Casilla 307 Correo 2, Santiago, Chile |
References:
[1] |
M. Adler, On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-Devries type equations,, Inventiones Mathematicae, 50 (1979), 219.
doi: 10.1007/BF01410079. |
[2] |
N. Bourbaki, "Algebra I. Chapters 1-3. Elements of Mathematics,", Springer-Verlag, (1998).
|
[3] |
E. E. Demidov, On the Kadomtsev-Petviashvili hierarchy with a noncommutative timespace,, Functional Analysis and Its Applications, 29 (1995), 131.
doi: 10.1007/BF01080014. |
[4] |
E. E. Demidov, Noncommutative deformation of the Kadomtsev-Petviashvili hierarchy, In "Algebra. 5, Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI)," Moscow, 1995. (Russian),, Journal of Mathematical Sciences (New York), 88 (1998), 520.
doi: 10.1007/BF02365314. |
[5] |
L. A. Dickey, "Soliton Equations and Hamiltonian Systems," Second Edition,, Advanced Series in Mathematical Physics $12$, (2003).
|
[6] |
L. D. Faddeev, and L. A. Takhtajan, "Hamiltonian Methods in the Theory of Solitons,", Springer Series in Soviet Mathematics, (1987).
|
[7] |
B. A. Khesin and I. Zakharevich, Poisson-Lie groups of pseudodifferential symbols,, Communications in Mathematical Physics, 171 (1995), 475.
doi: 10.1007/BF02104676. |
[8] |
B. A. Khesin and G. Misiolek, Euler equations on homogeneous spaces and Virasoro orbits,, Advances in Mathematics, 176 (2003), 116.
doi: 10.1016/S0001-8708(02)00063-4. |
[9] |
B. A. Khesin and R. Wendt, "The Geometry of Infinite-Dimensional Groups,", Springer-Verlag, (2009).
|
[10] |
F. Kubo, Non-commutative Poisson algebra structures on affine Kac-Moody algebras,, Journal of Pure and Applied Algebra, 126 (1998), 267.
doi: 10.1016/S0022-4049(96)00141-7. |
[11] |
L.-C. Li, Factorization problem on the Hilbert-Schmidt group and the Camassa-Holm equation,, Communications on Pure and Applied Mathematics, 61 (2008), 186.
doi: 10.1002/cpa.20207. |
[12] |
J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", Second edition, (1999).
|
[13] |
J. Mickelsson, "Current Algebras and Groups,", Plenum Press, (1989).
|
[14] |
A. V. Mikhailov, A. B. Shabat and V. V. Sokolov, The symmetry approach to classification of integrable equations,, in, (1991), 115.
|
[15] |
M. Mulase, Complete integrability of the Kadomtsev-Petvishvili equation,, Advances in Mathematics, 54 (1984), 57.
doi: 10.1016/0001-8708(84)90036-7. |
[16] |
M. Mulase, Cohomological structure in soliton equations and Jacobian varieties,, J. Differential Geom., 19 (1984), 403.
|
[17] |
M. Mulase, Solvability of the super KP equation and a generalization of the Birkhoff decomposition,, Inventiones Mathematicae, 92 (1988), 1.
doi: 10.1007/BF01393991. |
[18] |
P. J. Olver, "Applications of Lie Groups to Differential Equations,", Second Edition, (1993).
|
[19] |
P. J. Olver and V. V. Sokolov, Integrable evolution equations on associative algebras,, Communications in Mathematical Physics, 193 (1998), 245.
doi: 10.1007/s002200050328. |
[20] |
A. N. Parshin, On a ring of formal pseudo-differential operators,, Proc. Steklov Inst. Math. 224 (1999), 224 (1999), 266.
|
[21] |
A. M. Perelomov, "Integrable Systems of Classical Mechanics And Lie Algebras,", Birkhäuser Verlag, (1990).
doi: 10.1007/978-3-0348-9257-5. |
[22] |
A. Pressley and G.B. Segal, "Loop Groups,", Oxford University Press, (1986). Google Scholar |
[23] |
A. G. Reyman and M. A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II,, Inventiones mathematicae, 63 (1981), 423.
doi: 10.1007/BF01389063. |
[24] |
M. Sakakibara, Factorization methods for noncommutative KP and Toda hierarchy,, Journal of Physics A: Mathematical and General, 37 (2004).
doi: 10.1088/0305-4470/37/45/L02. |
[25] |
M. A. Semenov-Tian-Shansky, What is a classical $r$-matrix?,, Funct. Anal. Appl., 17 (1983), 259. Google Scholar |
[26] |
K. Takasaki, A new approach to the self-dual Yang-Mills equations,, Communications in Mathematical Physics, 94 (1984), 35.
doi: 10.1007/BF01212348. |
[27] |
K. Takasaki, A new approach to the self-dual Yang-Mills equations II,, Saitama Math.J., 3 (1985), 11.
|
[28] |
K. Takasaki, Dressing operator approach to Moyal algebraic deformation of selfdual gravity,, Journal of Geometry and Physics, 14 (1994), 111.
doi: 10.1016/0393-0440(94)90003-5. |
[29] |
K. Takasaki, Nonabelian KP hierarchy with Moyal algebraic coefficients,, Journal of Geometry and Physics, 14 (1994), 332.
doi: 10.1016/0393-0440(94)90040-X. |
[30] |
D. A. Tuganbaev, Laurent series rings and pseudo-differential operator rings,, Journal of Mathematical Sciences (NY), 128 (2005), 2843.
doi: 10.1007/s10958-005-0244-6. |
[31] |
Y. Watanabe, Hamiltonian structure of Sato's hierarchy of KP equations and a coadjoint orbit of a certain formal Lie group,, Letters in Mathematical Physics, 7 (1983), 99.
doi: 10.1007/BF00419926. |
[32] |
Y. Watanabe, Hamiltonian structure of M. Sato's hierarchy of Kadomtsev-Petviashvili equation,, Annali di Matematica Pura ed Applicata, 136 (1984), 77.
doi: 10.1007/BF01773378. |
[33] |
A. B. Zheglov, On rings of commuting partial differential operators, preprint,, , (). Google Scholar |
[34] |
A. B. Zheglov, Two dimensional KP systems and their solvability, preprint,, , (). Google Scholar |
show all references
References:
[1] |
M. Adler, On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-Devries type equations,, Inventiones Mathematicae, 50 (1979), 219.
doi: 10.1007/BF01410079. |
[2] |
N. Bourbaki, "Algebra I. Chapters 1-3. Elements of Mathematics,", Springer-Verlag, (1998).
|
[3] |
E. E. Demidov, On the Kadomtsev-Petviashvili hierarchy with a noncommutative timespace,, Functional Analysis and Its Applications, 29 (1995), 131.
doi: 10.1007/BF01080014. |
[4] |
E. E. Demidov, Noncommutative deformation of the Kadomtsev-Petviashvili hierarchy, In "Algebra. 5, Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI)," Moscow, 1995. (Russian),, Journal of Mathematical Sciences (New York), 88 (1998), 520.
doi: 10.1007/BF02365314. |
[5] |
L. A. Dickey, "Soliton Equations and Hamiltonian Systems," Second Edition,, Advanced Series in Mathematical Physics $12$, (2003).
|
[6] |
L. D. Faddeev, and L. A. Takhtajan, "Hamiltonian Methods in the Theory of Solitons,", Springer Series in Soviet Mathematics, (1987).
|
[7] |
B. A. Khesin and I. Zakharevich, Poisson-Lie groups of pseudodifferential symbols,, Communications in Mathematical Physics, 171 (1995), 475.
doi: 10.1007/BF02104676. |
[8] |
B. A. Khesin and G. Misiolek, Euler equations on homogeneous spaces and Virasoro orbits,, Advances in Mathematics, 176 (2003), 116.
doi: 10.1016/S0001-8708(02)00063-4. |
[9] |
B. A. Khesin and R. Wendt, "The Geometry of Infinite-Dimensional Groups,", Springer-Verlag, (2009).
|
[10] |
F. Kubo, Non-commutative Poisson algebra structures on affine Kac-Moody algebras,, Journal of Pure and Applied Algebra, 126 (1998), 267.
doi: 10.1016/S0022-4049(96)00141-7. |
[11] |
L.-C. Li, Factorization problem on the Hilbert-Schmidt group and the Camassa-Holm equation,, Communications on Pure and Applied Mathematics, 61 (2008), 186.
doi: 10.1002/cpa.20207. |
[12] |
J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", Second edition, (1999).
|
[13] |
J. Mickelsson, "Current Algebras and Groups,", Plenum Press, (1989).
|
[14] |
A. V. Mikhailov, A. B. Shabat and V. V. Sokolov, The symmetry approach to classification of integrable equations,, in, (1991), 115.
|
[15] |
M. Mulase, Complete integrability of the Kadomtsev-Petvishvili equation,, Advances in Mathematics, 54 (1984), 57.
doi: 10.1016/0001-8708(84)90036-7. |
[16] |
M. Mulase, Cohomological structure in soliton equations and Jacobian varieties,, J. Differential Geom., 19 (1984), 403.
|
[17] |
M. Mulase, Solvability of the super KP equation and a generalization of the Birkhoff decomposition,, Inventiones Mathematicae, 92 (1988), 1.
doi: 10.1007/BF01393991. |
[18] |
P. J. Olver, "Applications of Lie Groups to Differential Equations,", Second Edition, (1993).
|
[19] |
P. J. Olver and V. V. Sokolov, Integrable evolution equations on associative algebras,, Communications in Mathematical Physics, 193 (1998), 245.
doi: 10.1007/s002200050328. |
[20] |
A. N. Parshin, On a ring of formal pseudo-differential operators,, Proc. Steklov Inst. Math. 224 (1999), 224 (1999), 266.
|
[21] |
A. M. Perelomov, "Integrable Systems of Classical Mechanics And Lie Algebras,", Birkhäuser Verlag, (1990).
doi: 10.1007/978-3-0348-9257-5. |
[22] |
A. Pressley and G.B. Segal, "Loop Groups,", Oxford University Press, (1986). Google Scholar |
[23] |
A. G. Reyman and M. A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II,, Inventiones mathematicae, 63 (1981), 423.
doi: 10.1007/BF01389063. |
[24] |
M. Sakakibara, Factorization methods for noncommutative KP and Toda hierarchy,, Journal of Physics A: Mathematical and General, 37 (2004).
doi: 10.1088/0305-4470/37/45/L02. |
[25] |
M. A. Semenov-Tian-Shansky, What is a classical $r$-matrix?,, Funct. Anal. Appl., 17 (1983), 259. Google Scholar |
[26] |
K. Takasaki, A new approach to the self-dual Yang-Mills equations,, Communications in Mathematical Physics, 94 (1984), 35.
doi: 10.1007/BF01212348. |
[27] |
K. Takasaki, A new approach to the self-dual Yang-Mills equations II,, Saitama Math.J., 3 (1985), 11.
|
[28] |
K. Takasaki, Dressing operator approach to Moyal algebraic deformation of selfdual gravity,, Journal of Geometry and Physics, 14 (1994), 111.
doi: 10.1016/0393-0440(94)90003-5. |
[29] |
K. Takasaki, Nonabelian KP hierarchy with Moyal algebraic coefficients,, Journal of Geometry and Physics, 14 (1994), 332.
doi: 10.1016/0393-0440(94)90040-X. |
[30] |
D. A. Tuganbaev, Laurent series rings and pseudo-differential operator rings,, Journal of Mathematical Sciences (NY), 128 (2005), 2843.
doi: 10.1007/s10958-005-0244-6. |
[31] |
Y. Watanabe, Hamiltonian structure of Sato's hierarchy of KP equations and a coadjoint orbit of a certain formal Lie group,, Letters in Mathematical Physics, 7 (1983), 99.
doi: 10.1007/BF00419926. |
[32] |
Y. Watanabe, Hamiltonian structure of M. Sato's hierarchy of Kadomtsev-Petviashvili equation,, Annali di Matematica Pura ed Applicata, 136 (1984), 77.
doi: 10.1007/BF01773378. |
[33] |
A. B. Zheglov, On rings of commuting partial differential operators, preprint,, , (). Google Scholar |
[34] |
A. B. Zheglov, Two dimensional KP systems and their solvability, preprint,, , (). Google Scholar |
[1] |
Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835 |
[2] |
Pedro Isaza, Juan López, Jorge Mejía. Cauchy problem for the fifth order Kadomtsev-Petviashvili (KPII) equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 887-905. doi: 10.3934/cpaa.2006.5.887 |
[3] |
Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483 |
[4] |
Pedro Isaza, Jorge Mejía. On the support of solutions to the Kadomtsev-Petviashvili (KP-II) equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1239-1255. doi: 10.3934/cpaa.2011.10.1239 |
[5] |
Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247 |
[6] |
Nobu Kishimoto, Minjie Shan, Yoshio Tsutsumi. Global well-posedness and existence of the global attractor for the Kadomtsev-Petviashvili Ⅱ equation in the anisotropic Sobolev space. Discrete & Continuous Dynamical Systems - A, 2020, 40 (3) : 1283-1307. doi: 10.3934/dcds.2020078 |
[7] |
Christian Klein, Ralf Peter. Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1689-1717. doi: 10.3934/dcdsb.2014.19.1689 |
[8] |
Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059 |
[9] |
Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete & Continuous Dynamical Systems - A, 2020, 40 (9) : 5247-5287. doi: 10.3934/dcds.2020227 |
[10] |
Brandon Seward. Krieger's finite generator theorem for actions of countable groups Ⅱ. Journal of Modern Dynamics, 2019, 15: 1-39. doi: 10.3934/jmd.2019012 |
[11] |
Daniele Mundici. The Haar theorem for lattice-ordered abelian groups with order-unit. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 537-549. doi: 10.3934/dcds.2008.21.537 |
[12] |
Anwar Ja'afar Mohamad Jawad, Mohammad Mirzazadeh, Anjan Biswas. Dynamics of shallow water waves with Gardner-Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1155-1164. doi: 10.3934/dcdss.2015.8.1155 |
[13] |
Qiang Li. A kind of generalized transversality theorem for $C^r$ mapping with parameter. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1043-1050. doi: 10.3934/dcdss.2017055 |
[14] |
Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721 |
[15] |
Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007 |
[16] |
André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351 |
[17] |
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517 |
[18] |
Daniel T. Wise. Research announcement: The structure of groups with a quasiconvex hierarchy. Electronic Research Announcements, 2009, 16: 44-55. doi: 10.3934/era.2009.16.44 |
[19] |
Mauro Fabrizio, Jaime Munõz Rivera. An integration model for two different ethnic groups. Evolution Equations & Control Theory, 2014, 3 (2) : 277-286. doi: 10.3934/eect.2014.3.277 |
[20] |
Sangye Lungten, Wil H. A. Schilders, Joseph M. L. Maubach. Sparse inverse incidence matrices for Schilders' factorization applied to resistor network modeling. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 227-239. doi: 10.3934/naco.2014.4.227 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]