-
Previous Article
Lagrange-Poincaré reduction in affine principal bundles
- JGM Home
- This Issue
-
Next Article
A special tribute to Professor Pedro L. García
Discrete second order constrained Lagrangian systems: First results
1. | Depto. de Matemática, Facultad de Ciencias Exactas, UNLP, Instituto Balseiro, UNCu - CNEA - CONICET, 50 y 115, La Plata, Buenos Aires, 1900, Argentina |
2. | Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A., Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP |
3. | Instituto Balseiro, UNCu - CNEA - CONICET, Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP, Argentina |
References:
[1] |
R. Benito and D. Martín de Diego, Hidden symplecticity in Hamilton's principle algorithms,, in Differential Geometry and its Applications, (2005), 411.
|
[2] |
R. Benito, M. de León and D. Martín de Diego, Higher-order discrete Lagrangian mechanics,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 421.
doi: 10.1142/S0219887806001235. |
[3] |
A. M. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics, (2003).
|
[4] |
N. Borda, Sistemas Mecánicos Discretos con Vínculos de Orden 2,, Tesis de Maestría en Ciencias Físicas, (2011). Google Scholar |
[5] |
C. M. Campos, H. Cendra, V. Díaz and D. Martín de Diego, Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk,, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106 (2012), 225.
doi: 10.1007/s13398-011-0053-3. |
[6] |
H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006).
doi: 10.1063/1.2165797. |
[7] |
H. Cendra and S. D. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007).
doi: 10.1063/1.2740470. |
[8] |
H. Cendra, A. Ibort, M. de León and D. Martín de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785.
doi: 10.1063/1.1763245. |
[9] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).
doi: 10.1090/memo/0722. |
[10] |
N. G. Chetaev, On the Gauss principle,, Izv. Fiz-Mat. Obsc. Kazan Univ., 7 (1934), 68. Google Scholar |
[11] |
L. Colombo, D. Martín de Diego and M. Zuccalli, Higher-order discrete variational problems with constraints,, J. Math. Phys., 54 (2013).
doi: 10.1063/1.4820817. |
[12] |
J. Cortés and S. Martínez, Nonholonomic integrators,, Nonlinearity, 14 (2001), 1365.
|
[13] |
J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Lecture Notes in Mathematics, (1793).
doi: 10.1007/b84020. |
[14] |
M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565.
doi: 10.1017/S0305004100064501. |
[15] |
M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives,, North-Holland Mathematics Studies, (1985).
|
[16] |
M. de León, D. Martín de Diego and A. Santamaría-Merino, Geometric integrators and nonholonomic mechanics,, J. Math. Phys., 45 (2004), 1042.
doi: 10.1063/1.1644325. |
[17] |
V. Dobronravov, The Fundamentals of the Mechanics of Nonholonomic Systems,, Vysshaya Shkola, (1970). Google Scholar |
[18] |
J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems,, J. Geom. Mech., 2 (2010), 69.
doi: 10.3934/jgm.2010.2.69. |
[19] |
S. Grillo, Higher order constraints Hamiltonian systems,, J. Math. Phys., 50 (2009).
doi: 10.1063/1.3194782. |
[20] |
S. Grillo, Sistemas Noholónomos Generalizados,, Tesis de Doctorado en Matemática, (2007). Google Scholar |
[21] |
S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, Int. J. Geom. Methods Mod. Phys., 7 (2010), 857.
doi: 10.1142/S0219887810004580. |
[22] |
S. Grillo, J. E. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization,, J. Geom. Mech., 3 (2011), 145.
doi: 10.3934/jgm.2011.3.145. |
[23] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,, Second edition, (2006).
|
[24] |
O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304.
doi: 10.1063/1.533411. |
[25] |
C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353.
|
[26] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numer., 10 (2001), 357.
doi: 10.1017/S096249290100006X. |
[27] |
R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283.
doi: 10.1007/s00332-005-0698-1. |
[28] |
Yu. Neĭmark and N. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972). Google Scholar |
[29] |
G. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems,, Numer. Math., 113 (2009), 243.
doi: 10.1007/s00211-009-0245-3. |
[30] |
A. Shiriaev, J. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach,, IEEE Trans. Automat. Control, 50 (2005), 1164.
doi: 10.1109/TAC.2005.852568. |
[31] |
M. Swaczyna, Mechanical systems with nonholonomic constraints of the second order,, AIP Conf. Proc., 1360 (2011), 164.
doi: 10.1063/1.3599143. |
show all references
References:
[1] |
R. Benito and D. Martín de Diego, Hidden symplecticity in Hamilton's principle algorithms,, in Differential Geometry and its Applications, (2005), 411.
|
[2] |
R. Benito, M. de León and D. Martín de Diego, Higher-order discrete Lagrangian mechanics,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 421.
doi: 10.1142/S0219887806001235. |
[3] |
A. M. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics, (2003).
|
[4] |
N. Borda, Sistemas Mecánicos Discretos con Vínculos de Orden 2,, Tesis de Maestría en Ciencias Físicas, (2011). Google Scholar |
[5] |
C. M. Campos, H. Cendra, V. Díaz and D. Martín de Diego, Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk,, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106 (2012), 225.
doi: 10.1007/s13398-011-0053-3. |
[6] |
H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006).
doi: 10.1063/1.2165797. |
[7] |
H. Cendra and S. D. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007).
doi: 10.1063/1.2740470. |
[8] |
H. Cendra, A. Ibort, M. de León and D. Martín de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785.
doi: 10.1063/1.1763245. |
[9] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).
doi: 10.1090/memo/0722. |
[10] |
N. G. Chetaev, On the Gauss principle,, Izv. Fiz-Mat. Obsc. Kazan Univ., 7 (1934), 68. Google Scholar |
[11] |
L. Colombo, D. Martín de Diego and M. Zuccalli, Higher-order discrete variational problems with constraints,, J. Math. Phys., 54 (2013).
doi: 10.1063/1.4820817. |
[12] |
J. Cortés and S. Martínez, Nonholonomic integrators,, Nonlinearity, 14 (2001), 1365.
|
[13] |
J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Lecture Notes in Mathematics, (1793).
doi: 10.1007/b84020. |
[14] |
M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565.
doi: 10.1017/S0305004100064501. |
[15] |
M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives,, North-Holland Mathematics Studies, (1985).
|
[16] |
M. de León, D. Martín de Diego and A. Santamaría-Merino, Geometric integrators and nonholonomic mechanics,, J. Math. Phys., 45 (2004), 1042.
doi: 10.1063/1.1644325. |
[17] |
V. Dobronravov, The Fundamentals of the Mechanics of Nonholonomic Systems,, Vysshaya Shkola, (1970). Google Scholar |
[18] |
J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems,, J. Geom. Mech., 2 (2010), 69.
doi: 10.3934/jgm.2010.2.69. |
[19] |
S. Grillo, Higher order constraints Hamiltonian systems,, J. Math. Phys., 50 (2009).
doi: 10.1063/1.3194782. |
[20] |
S. Grillo, Sistemas Noholónomos Generalizados,, Tesis de Doctorado en Matemática, (2007). Google Scholar |
[21] |
S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, Int. J. Geom. Methods Mod. Phys., 7 (2010), 857.
doi: 10.1142/S0219887810004580. |
[22] |
S. Grillo, J. E. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization,, J. Geom. Mech., 3 (2011), 145.
doi: 10.3934/jgm.2011.3.145. |
[23] |
E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,, Second edition, (2006).
|
[24] |
O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304.
doi: 10.1063/1.533411. |
[25] |
C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353.
|
[26] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numer., 10 (2001), 357.
doi: 10.1017/S096249290100006X. |
[27] |
R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283.
doi: 10.1007/s00332-005-0698-1. |
[28] |
Yu. Neĭmark and N. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972). Google Scholar |
[29] |
G. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems,, Numer. Math., 113 (2009), 243.
doi: 10.1007/s00211-009-0245-3. |
[30] |
A. Shiriaev, J. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach,, IEEE Trans. Automat. Control, 50 (2005), 1164.
doi: 10.1109/TAC.2005.852568. |
[31] |
M. Swaczyna, Mechanical systems with nonholonomic constraints of the second order,, AIP Conf. Proc., 1360 (2011), 164.
doi: 10.1063/1.3599143. |
[1] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[2] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[3] |
Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184 |
[4] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[5] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[6] |
Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151 |
[7] |
Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133 |
[8] |
Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597 |
[9] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[10] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[11] |
Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355 |
[12] |
M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202 |
[13] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
[14] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[15] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[16] |
A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044 |
[17] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[18] |
Tuvi Etzion, Alexander Vardy. On $q$-analogs of Steiner systems and covering designs. Advances in Mathematics of Communications, 2011, 5 (2) : 161-176. doi: 10.3934/amc.2011.5.161 |
[19] |
Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017 |
[20] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]