December  2013, 5(4): 381-397. doi: 10.3934/jgm.2013.5.381

Discrete second order constrained Lagrangian systems: First results

1. 

Depto. de Matemática, Facultad de Ciencias Exactas, UNLP, Instituto Balseiro, UNCu - CNEA - CONICET, 50 y 115, La Plata, Buenos Aires, 1900, Argentina

2. 

Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A., Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP

3. 

Instituto Balseiro, UNCu - CNEA - CONICET, Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP, Argentina

Received  March 2013 Revised  November 2013 Published  December 2013

We briefly review the notion of second order constrained (continuous) system (SOCS) and then propose a discrete time counterpart of it, which we naturally call discrete second order constrained system (DSOCS). To illustrate and test numerically our model, we construct certain integrators that simulate the evolution of two mechanical systems: a particle moving in the plane with prescribed signed curvature, and the inertia wheel pendulum with a Lyapunov constraint. In addition, we prove a local existence and uniqueness result for trajectories of DSOCSs. As a first comparison of the underlying geometric structures, we study the symplectic behavior of both SOCSs and DSOCSs.
Citation: Nicolás Borda, Javier Fernández, Sergio Grillo. Discrete second order constrained Lagrangian systems: First results. Journal of Geometric Mechanics, 2013, 5 (4) : 381-397. doi: 10.3934/jgm.2013.5.381
References:
[1]

R. Benito and D. Martín de Diego, Hidden symplecticity in Hamilton's principle algorithms, in Differential Geometry and its Applications, Matfyzpress, Prague, 2005, 411-419.

[2]

R. Benito, M. de León and D. Martín de Diego, Higher-order discrete Lagrangian mechanics, Int. J. Geom. Methods Mod. Phys., 3 (2006), 421-436. doi: 10.1142/S0219887806001235.

[3]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003.

[4]

N. Borda, Sistemas Mecánicos Discretos con Vínculos de Orden 2, Tesis de Maestría en Ciencias Físicas, Instituto Balseiro, S. C. de Bariloche, 2011.

[5]

C. M. Campos, H. Cendra, V. Díaz and D. Martín de Diego, Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106 (2012), 225-234. doi: 10.1007/s13398-011-0053-3.

[6]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets, J. Math. Phys., 47 (2006), 022902, 29 pp. doi: 10.1063/1.2165797.

[7]

H. Cendra and S. D. Grillo, Lagrangian systems with higher order constraints, J. Math. Phys., 48 (2007), 052904, 35 pp. doi: 10.1063/1.2740470.

[8]

H. Cendra, A. Ibort, M. de León and D. Martín de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints, J. Math. Phys., 45 (2004), 2785-2801. doi: 10.1063/1.1763245.

[9]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001). doi: 10.1090/memo/0722.

[10]

N. G. Chetaev, On the Gauss principle, Izv. Fiz-Mat. Obsc. Kazan Univ., 7 (1934), 68-71.

[11]

L. Colombo, D. Martín de Diego and M. Zuccalli, Higher-order discrete variational problems with constraints, J. Math. Phys., 54 (2013), 093507. doi: 10.1063/1.4820817.

[12]

J. Cortés and S. Martínez, Nonholonomic integrators, Nonlinearity, 14 (2001), 1365-1392.

[13]

J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics, 1793, Springer-Verlag, Berlin, 2002. doi: 10.1007/b84020.

[14]

M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565-587. doi: 10.1017/S0305004100064501.

[15]

M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives, North-Holland Mathematics Studies, 112, Notes on Pure Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1985.

[16]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Geometric integrators and nonholonomic mechanics, J. Math. Phys., 45 (2004), 1042-1064. doi: 10.1063/1.1644325.

[17]

V. Dobronravov, The Fundamentals of the Mechanics of Nonholonomic Systems, Vysshaya Shkola, 1970.

[18]

J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems, J. Geom. Mech., 2 (2010), 69-111. doi: 10.3934/jgm.2010.2.69.

[19]

S. Grillo, Higher order constraints Hamiltonian systems, J. Math. Phys., 50 (2009), 082901, 34 pp. doi: 10.1063/1.3194782.

[20]

S. Grillo, Sistemas Noholónomos Generalizados, Tesis de Doctorado en Matemática, Universidad Nacional del Sur, Bahía Blanca, 2007.

[21]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems, Int. J. Geom. Methods Mod. Phys., 7 (2010), 857-886. doi: 10.1142/S0219887810004580.

[22]

S. Grillo, J. E. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization, J. Geom. Mech., 3 (2011), 145-196. doi: 10.3934/jgm.2011.3.145.

[23]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006.

[24]

O. Krupková, Higher-order mechanical systems with constraints, J. Math. Phys., 41 (2000), 5304-5324. doi: 10.1063/1.533411.

[25]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353-364.

[26]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514. doi: 10.1017/S096249290100006X.

[27]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328. doi: 10.1007/s00332-005-0698-1.

[28]

Yu. Neĭmark and N. Fufaev, Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, 33, AMS, Providence, 1972.

[29]

G. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264. doi: 10.1007/s00211-009-0245-3.

[30]

A. Shiriaev, J. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Trans. Automat. Control, 50 (2005), 1164-1176. doi: 10.1109/TAC.2005.852568.

[31]

M. Swaczyna, Mechanical systems with nonholonomic constraints of the second order, AIP Conf. Proc., 1360 (2011), 164-169. doi: 10.1063/1.3599143.

show all references

References:
[1]

R. Benito and D. Martín de Diego, Hidden symplecticity in Hamilton's principle algorithms, in Differential Geometry and its Applications, Matfyzpress, Prague, 2005, 411-419.

[2]

R. Benito, M. de León and D. Martín de Diego, Higher-order discrete Lagrangian mechanics, Int. J. Geom. Methods Mod. Phys., 3 (2006), 421-436. doi: 10.1142/S0219887806001235.

[3]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003.

[4]

N. Borda, Sistemas Mecánicos Discretos con Vínculos de Orden 2, Tesis de Maestría en Ciencias Físicas, Instituto Balseiro, S. C. de Bariloche, 2011.

[5]

C. M. Campos, H. Cendra, V. Díaz and D. Martín de Diego, Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106 (2012), 225-234. doi: 10.1007/s13398-011-0053-3.

[6]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets, J. Math. Phys., 47 (2006), 022902, 29 pp. doi: 10.1063/1.2165797.

[7]

H. Cendra and S. D. Grillo, Lagrangian systems with higher order constraints, J. Math. Phys., 48 (2007), 052904, 35 pp. doi: 10.1063/1.2740470.

[8]

H. Cendra, A. Ibort, M. de León and D. Martín de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints, J. Math. Phys., 45 (2004), 2785-2801. doi: 10.1063/1.1763245.

[9]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001). doi: 10.1090/memo/0722.

[10]

N. G. Chetaev, On the Gauss principle, Izv. Fiz-Mat. Obsc. Kazan Univ., 7 (1934), 68-71.

[11]

L. Colombo, D. Martín de Diego and M. Zuccalli, Higher-order discrete variational problems with constraints, J. Math. Phys., 54 (2013), 093507. doi: 10.1063/1.4820817.

[12]

J. Cortés and S. Martínez, Nonholonomic integrators, Nonlinearity, 14 (2001), 1365-1392.

[13]

J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems, Lecture Notes in Mathematics, 1793, Springer-Verlag, Berlin, 2002. doi: 10.1007/b84020.

[14]

M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565-587. doi: 10.1017/S0305004100064501.

[15]

M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives, North-Holland Mathematics Studies, 112, Notes on Pure Mathematics, 102, North-Holland Publishing Co., Amsterdam, 1985.

[16]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Geometric integrators and nonholonomic mechanics, J. Math. Phys., 45 (2004), 1042-1064. doi: 10.1063/1.1644325.

[17]

V. Dobronravov, The Fundamentals of the Mechanics of Nonholonomic Systems, Vysshaya Shkola, 1970.

[18]

J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems, J. Geom. Mech., 2 (2010), 69-111. doi: 10.3934/jgm.2010.2.69.

[19]

S. Grillo, Higher order constraints Hamiltonian systems, J. Math. Phys., 50 (2009), 082901, 34 pp. doi: 10.1063/1.3194782.

[20]

S. Grillo, Sistemas Noholónomos Generalizados, Tesis de Doctorado en Matemática, Universidad Nacional del Sur, Bahía Blanca, 2007.

[21]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems, Int. J. Geom. Methods Mod. Phys., 7 (2010), 857-886. doi: 10.1142/S0219887810004580.

[22]

S. Grillo, J. E. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization, J. Geom. Mech., 3 (2011), 145-196. doi: 10.3934/jgm.2011.3.145.

[23]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Second edition, Springer Series in Computational Mathematics, 31, Springer-Verlag, Berlin, 2006.

[24]

O. Krupková, Higher-order mechanical systems with constraints, J. Math. Phys., 41 (2000), 5304-5324. doi: 10.1063/1.533411.

[25]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353-364.

[26]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514. doi: 10.1017/S096249290100006X.

[27]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328. doi: 10.1007/s00332-005-0698-1.

[28]

Yu. Neĭmark and N. Fufaev, Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, 33, AMS, Providence, 1972.

[29]

G. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems, Numer. Math., 113 (2009), 243-264. doi: 10.1007/s00211-009-0245-3.

[30]

A. Shiriaev, J. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach, IEEE Trans. Automat. Control, 50 (2005), 1164-1176. doi: 10.1109/TAC.2005.852568.

[31]

M. Swaczyna, Mechanical systems with nonholonomic constraints of the second order, AIP Conf. Proc., 1360 (2011), 164-169. doi: 10.1063/1.3599143.

[1]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[2]

Jean-Marie Souriau. On Geometric Mechanics. Discrete and Continuous Dynamical Systems, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[3]

Andrew D. Lewis. Nonholonomic and constrained variational mechanics. Journal of Geometric Mechanics, 2020, 12 (2) : 165-308. doi: 10.3934/jgm.2020013

[4]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[5]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[6]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[7]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[8]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[9]

Thomas Hagen, Andreas Johann, Hans-Peter Kruse, Florian Rupp, Sebastian Walcher. Dynamical systems and geometric mechanics: A special issue in Honor of Jürgen Scheurle. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : i-iii. doi: 10.3934/dcdss.20204i

[10]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1229-1242. doi: 10.3934/dcdss.2020071

[11]

Luis C. García-Naranjo, Mats Vermeeren. Structure preserving discretization of time-reparametrized Hamiltonian systems with application to nonholonomic mechanics. Journal of Computational Dynamics, 2021, 8 (3) : 241-271. doi: 10.3934/jcd.2021011

[12]

Alexis Arnaudon, So Takao. Networks of coadjoint orbits: From geometric to statistical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 447-485. doi: 10.3934/jgm.2019023

[13]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[14]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[15]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[16]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[17]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[18]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[19]

Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure and Applied Analysis, 2021, 20 (6) : 2155-2185. doi: 10.3934/cpaa.2021062

[20]

Pedro D. Prieto-Martínez, Narciso Román-Roy. Higher-order mechanics: Variational principles and other topics. Journal of Geometric Mechanics, 2013, 5 (4) : 493-510. doi: 10.3934/jgm.2013.5.493

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (1)

[Back to Top]