December  2013, 5(4): 415-432. doi: 10.3934/jgm.2013.5.415

Regular discretizations in optimal control theory

1. 

Department of Applied Mathematics, University of Salamanca, Salamanca 37008

2. 

IUFFyM-USAL and Real Academia de Ciencias, Plaza de la Merced 1-4, 37008 Salamanca

Received  July 2013 Revised  November 2013 Published  December 2013

Given a regular optimal control problem with Lagrangian density $\mathcal{L} (t,x^\alpha,u^i)dt$ and constraints $\phi^\alpha\equiv \dot x^\alpha-f^\alpha(t,x^\beta,u^i)=0$, $1\le \alpha,\beta\le n$, $1\le i\le m$, we study the discretization defined for each pair $I_k=(k-1,k)$, $1\le k\le N$ by the functions: $$ \begin{aligned} L_{I_k}(x^\beta_{k-1},u^i_{k-1},x^\beta_k,u^i_k) = \mathcal{L} (t_{I_k},x^\alpha_{I_k},u^i_{I_k})h\\ \phi ^\alpha_{I_k}(x^\beta_{k-1},u^i_{k-1},x^\beta_k,u^i_k)=&\left(\frac{x^\alpha_{k}-x^\alpha_{k-1}}{h}-f^\alpha(t_{I_k},x^\beta_{I_k},u^i_{I_k}) \right)h \end{aligned} $$ where $t_k-t_{k-1}=h\in\mathbb{R}^+$ is fixed, and where: $$ \begin{aligned} t_{I_k}=&\epsilon t_{k-1}+(1-\epsilon) t_k=t_0+h(k-\epsilon)\\ x^\alpha_{I_k}=&\epsilon x^\alpha_{k-1}+(1-\epsilon)x^\alpha_k\\ u^i_{I_k}=&\epsilon u^i_{k-1}+(1-\epsilon)u^i_k \end{aligned}\quad 0\le \epsilon \le 1. $$ We prove that for $\epsilon\ne 0, 1$, the discrete Lagrange problems so defined are non singular in the sense of the discrete vakonomic mechanics admitting as infinitesimal symmetries the vector fields $D^i_k=\frac1{\epsilon h}\left(-\frac\epsilon{1-\epsilon}\right)^k\frac{\partial}{\partial u^i_k}$, $1\le i\le m$. The Noether invariants associated to these symmetries are used to construct the corresponding variational integrators. Finally, the theory is illustrated with two examples: the optimal regulator problem and the Heisenberg optimal control problem.
Citation: Antonio Fernández, Pedro L. García. Regular discretizations in optimal control theory. Journal of Geometric Mechanics, 2013, 5 (4) : 415-432. doi: 10.3934/jgm.2013.5.415
References:
[1]

M. Aldeen and F. Crusca, Quadratic cost function design for linear optimal control systems, in TENCON '92. "Technology Enabling Tomorrow: Computers, Communications and Automation towards the 21st Century.' 1992 IEEE Region 10 International Conference, IEEE, 1992, 958-962. doi: 10.1109/TENCON.1992.271828.

[2]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, Dynamical Systems. III, Encyclopaedia of Mathematical Sciences, 3, Springer-Verlag, Berlin, 1988. doi: 10.1007/978-3-642-61551-1.

[3]

R. Benito and D. Martín de Diego, Discrete vakonomic mechanics, J. Math. Phys., 46 (2005), 083521, 18 pp. doi: 10.1063/1.2008214.

[4]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.

[5]

A. Fernández, P. L García and Ana G Sípols, Variational integrators in discrete time-dependent optimal control theory, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106 (2012), 173-189. doi: 10.1007/s13398-011-0037-3.

[6]

P. L. García, A. García and C. Rodrigo, Cartan forms for first order constrained variational problems, J. Geom. Phys., 56 (2006), 571-610. doi: 10.1016/j.geomphys.2005.04.002.

[7]

P. L. García, A. Fernández and C. Rodrigo, Variational integrators for discrete Lagrange problems, J. Geom. Mech., 2 (2010), 343-374. doi: 10.3934/jgm.2010.2.343.

[8]

V. Guibout and A. Bloch, A discrete maximum principle for solving optimal control problems, in CDC. 43rd IEEE Conference on Decision and Control, 2004, Volume 2, IEEE, 2004, 1806-1811. doi: 10.1109/CDC.2004.1430309.

[9]

F. Jiménez and D. Martín de Diego, A geometric approach to discrete mechanics for optimal control theory, in Proceedings of the IEEE Conference on Decision and Control, Atlanta, Georgia, USA, 2010, 5426-5431.

[10]

F. Jiménez, M. Kobilarov and Martín de Diego, Discrete variational optimal control, accepted in Journal of Nonlinear Science, arXiv:1203.0580, 2012.

[11]

M. Kobilarov and J. E. Marsden, Discrete geometric optimal control on Lie groups, IEEE Transactions on Robotics, 27 (2011), 641-655. doi: 10.1109/TRO.2011.2139130.

[12]

T. Lee, N. McClamroch and M. Leok, Optimal control of a rigid body using geometrically exact computations on SE(3), in Proceedings of the IEEE Conference on Decision and Control, (2006), 2710-2715. doi: 10.1109/CDC.2006.376687.

[13]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Discrete variational integrators and optimal control theory, Adv. Comput. Math., 26 (2006), 251-268. doi: 10.1007/s10444-004-4093-5.

[14]

M. de León, J. C. Marrero and D. Martín de Diego, Vakonomic mechanics versus non-holonomic mechanics: A unified geometrical approach, J. Geom. Phys., 35 (2000), 126-144. doi: 10.1016/S0393-0440(00)00004-8.

[15]

M. Leok, Foundations of Computational Geometric Mechanics, Ph.D. Thesis, California Institute of Technology, 2004.

[16]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. in Math. Phys., 199 (1998), 351-395. doi: 10.1007/s002200050505.

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 317-514. doi: 10.1017/S096249290100006X.

[18]

J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243. doi: 10.1007/BF02352494.

[19]

S. Ober-Blöbaum, O. Junge and J. E. Marsden, Discrete mechanics and optimal control: An analysis, ESAIM Control Optim. Calc. Var., 17 (2011), 322-352. doi: 10.1051/cocv/2010012.

[20]

P. Piccione and D. V. Tausk, Lagrangian and Hamiltonian formalism for constrained variational problems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1417-1437.

[21]

M. West, Variational Integrators, Ph.D. Thesis, California Institute of Technology, 2004.

show all references

References:
[1]

M. Aldeen and F. Crusca, Quadratic cost function design for linear optimal control systems, in TENCON '92. "Technology Enabling Tomorrow: Computers, Communications and Automation towards the 21st Century.' 1992 IEEE Region 10 International Conference, IEEE, 1992, 958-962. doi: 10.1109/TENCON.1992.271828.

[2]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, Dynamical Systems. III, Encyclopaedia of Mathematical Sciences, 3, Springer-Verlag, Berlin, 1988. doi: 10.1007/978-3-642-61551-1.

[3]

R. Benito and D. Martín de Diego, Discrete vakonomic mechanics, J. Math. Phys., 46 (2005), 083521, 18 pp. doi: 10.1063/1.2008214.

[4]

A. M. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003. doi: 10.1007/b97376.

[5]

A. Fernández, P. L García and Ana G Sípols, Variational integrators in discrete time-dependent optimal control theory, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106 (2012), 173-189. doi: 10.1007/s13398-011-0037-3.

[6]

P. L. García, A. García and C. Rodrigo, Cartan forms for first order constrained variational problems, J. Geom. Phys., 56 (2006), 571-610. doi: 10.1016/j.geomphys.2005.04.002.

[7]

P. L. García, A. Fernández and C. Rodrigo, Variational integrators for discrete Lagrange problems, J. Geom. Mech., 2 (2010), 343-374. doi: 10.3934/jgm.2010.2.343.

[8]

V. Guibout and A. Bloch, A discrete maximum principle for solving optimal control problems, in CDC. 43rd IEEE Conference on Decision and Control, 2004, Volume 2, IEEE, 2004, 1806-1811. doi: 10.1109/CDC.2004.1430309.

[9]

F. Jiménez and D. Martín de Diego, A geometric approach to discrete mechanics for optimal control theory, in Proceedings of the IEEE Conference on Decision and Control, Atlanta, Georgia, USA, 2010, 5426-5431.

[10]

F. Jiménez, M. Kobilarov and Martín de Diego, Discrete variational optimal control, accepted in Journal of Nonlinear Science, arXiv:1203.0580, 2012.

[11]

M. Kobilarov and J. E. Marsden, Discrete geometric optimal control on Lie groups, IEEE Transactions on Robotics, 27 (2011), 641-655. doi: 10.1109/TRO.2011.2139130.

[12]

T. Lee, N. McClamroch and M. Leok, Optimal control of a rigid body using geometrically exact computations on SE(3), in Proceedings of the IEEE Conference on Decision and Control, (2006), 2710-2715. doi: 10.1109/CDC.2006.376687.

[13]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Discrete variational integrators and optimal control theory, Adv. Comput. Math., 26 (2006), 251-268. doi: 10.1007/s10444-004-4093-5.

[14]

M. de León, J. C. Marrero and D. Martín de Diego, Vakonomic mechanics versus non-holonomic mechanics: A unified geometrical approach, J. Geom. Phys., 35 (2000), 126-144. doi: 10.1016/S0393-0440(00)00004-8.

[15]

M. Leok, Foundations of Computational Geometric Mechanics, Ph.D. Thesis, California Institute of Technology, 2004.

[16]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. in Math. Phys., 199 (1998), 351-395. doi: 10.1007/s002200050505.

[17]

J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 317-514. doi: 10.1017/S096249290100006X.

[18]

J. Moser and A. P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243. doi: 10.1007/BF02352494.

[19]

S. Ober-Blöbaum, O. Junge and J. E. Marsden, Discrete mechanics and optimal control: An analysis, ESAIM Control Optim. Calc. Var., 17 (2011), 322-352. doi: 10.1051/cocv/2010012.

[20]

P. Piccione and D. V. Tausk, Lagrangian and Hamiltonian formalism for constrained variational problems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1417-1437.

[21]

M. West, Variational Integrators, Ph.D. Thesis, California Institute of Technology, 2004.

[1]

Gastão S. F. Frederico, Delfim F. M. Torres. Noether's symmetry Theorem for variational and optimal control problems with time delay. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 619-630. doi: 10.3934/naco.2012.2.619

[2]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[3]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[4]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[5]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[6]

John Fogarty. On Noether's bound for polynomial invariants of a finite group. Electronic Research Announcements, 2001, 7: 5-7.

[7]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial and Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

[8]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

[9]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[10]

Werner Bauer, François Gay-Balmaz. Variational integrators for anelastic and pseudo-incompressible flows. Journal of Geometric Mechanics, 2019, 11 (4) : 511-537. doi: 10.3934/jgm.2019025

[11]

V.N. Malozemov, A.V. Omelchenko. On a discrete optimal control problem with an explicit solution. Journal of Industrial and Management Optimization, 2006, 2 (1) : 55-62. doi: 10.3934/jimo.2006.2.55

[12]

Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63

[13]

Evelyn Herberg, Michael Hinze, Henrik Schumacher. Maximal discrete sparsity in parabolic optimal control with measures. Mathematical Control and Related Fields, 2020, 10 (4) : 735-759. doi: 10.3934/mcrf.2020018

[14]

Simão P. S. Santos, Natália Martins, Delfim F. M. Torres. Noether's theorem for higher-order variational problems of Herglotz type. Conference Publications, 2015, 2015 (special) : 990-999. doi: 10.3934/proc.2015.990

[15]

Nguyen Huy Chieu, Jen-Chih Yao. Subgradients of the optimal value function in a parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2010, 6 (2) : 401-410. doi: 10.3934/jimo.2010.6.401

[16]

Qiying Hu, Wuyi Yue. Optimal control for discrete event systems with arbitrary control pattern. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 535-558. doi: 10.3934/dcdsb.2006.6.535

[17]

Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012

[18]

Mats Vermeeren. Modified equations for variational integrators applied to Lagrangians linear in velocities. Journal of Geometric Mechanics, 2019, 11 (1) : 1-22. doi: 10.3934/jgm.2019001

[19]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[20]

Martin Brokate, Pavel Krejčí. Optimal control of ODE systems involving a rate independent variational inequality. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 331-348. doi: 10.3934/dcdsb.2013.18.331

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]