Citation: |
[1] |
F. Cantrijn, L. A. Ibort and M. de León, Hamiltonian structures on multisymplectic manifolds, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225-236. |
[2] |
C. M. Campos, E. Guzmán and J. C. Marrero, Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds, J. Geom. Mech., 4 (2012), 1-26.doi: 10.3934/jgm.2012.4.1. |
[3] |
J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order theories, Differential Geom. Appl., 1 (1991), 354-374.doi: 10.1016/0926-2245(91)90013-Y. |
[4] |
J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids, IMA J. Math. Control. Inform., 21 (2004), 457-492.doi: 10.1093/imamci/21.4.457. |
[5] |
A. Echeverría-Enríquez and M. C. Muñoz-Lecanda, Geometry of multisymplectic Hamiltonian first-order theory, J. Math. Phys., 41 (2000), 7402-7444.doi: 10.1063/1.1308075. |
[6] |
M. Forger, C. Paufler and H. Römer, A general construction of Poisson brackets on exact multisymplectic manifolds, Rep. Math. Phys., 51 (2003), 187-195.doi: 10.1016/S0034-4877(03)80012-5. |
[7] |
M. Forger, C. Paufler and H. Römer, Hamiltonian multivector fields and Poisson forms in multisymplectic field theories, J. Math. Phys., 46 (2005), 112903, 29 pp.doi: 10.1063/1.2116320. |
[8] |
K. Gawędzki, On the geometrization of the canonical formalism in the classical field theory, Rep. Math. Phys., 3 (1972), 307-326.doi: 10.1016/0034-4877(72)90014-6. |
[9] |
G. Giachetta and L. Mangiarotti, Constrained Hamiltonian systems and gauge theories, Int. J. Theor. Phys., 34 (1995), 2353-2371.doi: 10.1007/BF00670772. |
[10] |
G. Giachetta, L. Mangiarotti and G. A. Sardanashvili, Advanced Classical Field Theory, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.doi: 10.1142/9789812838964. |
[11] |
M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical fields. Part I: Covariant field theory, preprint, arXiv:physics/9801019v2. |
[12] |
M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical fields. Part II: Canonical analysis of field theories, preprint, arXiv:math-ph/0411032v1. |
[13] |
K. Grabowska, A Tulczyjew triple for classical fields, J. Phys. A, 45 (2012), 145207, 35 pp.doi: 10.1088/1751-8113/45/14/145207. |
[14] |
K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A, 41 (2008), 175204, 25 pp.doi: 10.1088/1751-8113/41/17/175204. |
[15] |
K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics, J. Geom. Phys., 61 (2011), 2233-2253.doi: 10.1016/j.geomphys.2011.06.018. |
[16] |
K. Grabowska, J. Grabowski and P. Urbański, Geometrical mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559-575.doi: 10.1142/S0219887806001259. |
[17] |
K. Grabowska, J. Grabowski and P. Urbański, AV-differential geometry: Poisson and Jacobi structures, J. Geom. Phys., 52 (2004), 398-446.doi: 10.1016/j.geomphys.2004.04.004. |
[18] |
J. Grabowski and M. Jóźwikowski, Pontryagin maximum principle on almost Lie algebroids, SIAM J. Control Optim., 49 (2011), 1306-1357.doi: 10.1137/090760246. |
[19] |
J. Grabowski and M. Rotkiewicz, Higher vector bundles and multi-graded symplectic manifolds, J. Geom. Phys., 59 (2009), 1285-1305,doi: 10.1016/j.geomphys.2009.06.009. |
[20] |
J. Grabowski, M. Rotkiewicz and P. Urbański, Double affine bundles, J. Geom. Phys., 60 (2010), 581-598.doi: 10.1016/j.geomphys.2009.12.008. |
[21] |
J. Grabowski and M. Rotkiewicz, Graded bundles and homogeneity structures, J. Geom. Phys., 62 (2012), 21-36.doi: 10.1016/j.geomphys.2011.09.004. |
[22] |
J. Grabowski and P. Urbański, Tangent lifts of Poisson and related structures, J. Phys. A, 28 (1995), 6743-6777.doi: 10.1088/0305-4470/28/23/024. |
[23] |
J. Grabowski and P. Urbański, Lie algebroids and Poisson-Nijenhuis structures, Rep. Math. Phys., 40 (1997), 195-208.doi: 10.1016/S0034-4877(97)85916-2. |
[24] |
J. Kijowski and W. Szczyrba, A canonical structure for classical field theories, Commun. Math. Phys., 46 (1976), 183-206.doi: 10.1007/BF01608496. |
[25] |
J. Kijowski and W. M. Tulczyjew, A Symplectic Framework for Field Theories, Lecture Notes in Physics, 107, Springer-Verlag, Berlin-New York, 1979. |
[26] |
K. Konieczna and P. Urbański, Double vector bundles and duality, Arch. Math. (Brno), 35 (1999), 59-95. |
[27] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308.doi: 10.1088/0305-4470/38/24/R01. |
[28] |
M. de León, D. Martín de Diego and A. Santamaría-Merino, Tulczyjew triples and Lagrangian submanifolds in classical field theories, in Applied Differential Geometry and Mechanics (eds. W. Sarlet and F. Cantrijn), Univ. of Gent, Gent, Academia Press, 2003, 21-47. |
[29] |
P. Liebermann and C. M. Marle, Symplectic Geometry and Analytical Mechanics, Mathematics and its Applications, 35, D. Reidel Publishing Co., Dordrecht, 1987.doi: 10.1007/978-94-009-3807-6. |
[30] |
K. C. H. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc., 27 (1995), 97-147.doi: 10.1112/blms/27.2.97. |
[31] |
J. Pradines, Fibrés Vectoriels Doubles et Calcul des Jets Non Holonomes, (French) [Double Vector Bundles and the Calculus of Nonholonomic Jets], Esquisses Mathématiques [Mathematical Sketches], 29, Université d'Amiens, U.E.R. de Mathématiques, Amiens, 1977. |
[32] |
W. M. Tulczyjew, Geometric Formulation of Physical Theories. Statics and Dynamics of Mechanical Systems, Monographs and Textbooks in Physical Science. Lecture Notes, 11, Bibliopolis, Naples, 1989. |
[33] |
W. M. Tulczyjew, The Legendre transformation, Ann. Inst. H. Poincaré Sect. A (N.S.), 27 (1977), 101-114. |
[34] |
W. M. Tulczyjew, Relations symplectiques et les équations d'Hamilton-Jacobi relativistes, (French) C. R. Acad. Sc. Paris Sér. A-B, 281 (1975), A545-A547. |
[35] |
W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique hamiltonienne, (French) C. R. Acad. Sc. Paris Sér. A-B, 283 (1976), A15-A18. |
[36] |
W. M. Tulczyjew, Les sous-variétés lagrangiennes et la dynamique lagrangienne, (French) C. R. Acad. Sc. Paris Sér. A-B, 283 (1976), A675-A678. |
[37] |
W. M. Tulczyjew, A symplectic framework for linear field theories, Ann. Mat. Pura Appl. (4), 130 (1982), 177-195.doi: 10.1007/BF01761494. |
[38] |
W. M. Tulczyjew and P. Urbański, A slow and careful Legendre transformation for singular Lagrangians, Acta Phys. Polon. B, 30 (1999), 2909-2978. |
[39] |
W. M. Tulczyjew and P. Urbański, Liouville structures, Univ. Iagel. Acta Math., 47 (2009), 187-226. |
[40] |
L. Vitagliano, Partial differential Hamiltonian systems, Cand. J. Math., 65 (2013), 1164-1200.doi: 10.4153/CJM-2012-055-0. |