December  2013, 5(4): 473-491. doi: 10.3934/jgm.2013.5.473

A Poincaré lemma in geometric quantisation

1. 

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, EPSEB, Avinguda del Doctor Marañón, 44-50, 08028, Barcelona, Spain

2. 

Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, ETSEIB, Avinguda Diagonal 647, 08028, Barcelona, Spain

Received  June 2013 Revised  December 2013 Published  December 2013

This article presents a Poincaré lemma for the Kostant complex, used to compute geometric quantisation, when the polarisation is given by a Lagrangian foliation defined by an integrable system with nondegenerate singularities.
Citation: Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473
References:
[1]

M. Bertelson, Remarks on a Künneth formula for foliated de Rham cohomology,, Pacific J. Math., 252 (2011), 257.  doi: 10.2140/pjm.2011.252.257.  Google Scholar

[2]

R. Bott and L. Tu, Differential Forms in Algebraic Topology,, Graduate Texts in Mathematics, (1982).   Google Scholar

[3]

G. Bredon, Sheaf Theory,, Second edition, (1997).  doi: 10.1007/978-1-4612-0647-7.  Google Scholar

[4]

L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals,, Ph.D. Thesis, (1984).   Google Scholar

[5]

L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case,, Comment. Math. Helv., 65 (1990), 4.  doi: 10.1007/BF02566590.  Google Scholar

[6]

A. Grothendieck, Séminaire Schwartz de la Faculté des Sciences de Paris, 1953/1954. Produits tensoriels topologiques d'espaces vectoriels topologiques,, in Espaces Vectoriels Topologiques Nucléaires. Applications, (1954).   Google Scholar

[7]

V. Guillemin and S. Sternberg, The Gel'fand-Cetlin system and quantization of the complex flag manifolds,, J. Funct. Anal., 52 (1983), 106.  doi: 10.1016/0022-1236(83)90092-7.  Google Scholar

[8]

V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations,, Inventiones Mathematicae, 67 (1982), 515.  doi: 10.1007/BF01398934.  Google Scholar

[9]

M. Hamilton, Locally toric manifolds and singular Bohr-Sommerfeld leaves,, Mem. Amer. Math. Soc., 207 (2010).  doi: 10.1090/S0065-9266-10-00583-1.  Google Scholar

[10]

M. Hamilton and E. Miranda, Geometric quantization of integrable systems with hyperbolic singularities,, Ann. Inst. Fourier (Grenoble), 60 (2010), 51.  doi: 10.5802/aif.2517.  Google Scholar

[11]

L. Kaup, Eine Künnethformel für Fréchetgarben,, Math. Z., 97 (1967), 158.   Google Scholar

[12]

B. Kostant, Quantization and unitary representations. Part I. Prequantization,, in Lectures in Modern Analysis and Applications, (1970).   Google Scholar

[13]

K. Mackenzie, Lie algebroids and Lie pseudoalgebras,, Bull. London Math. Soc., 27 (1995), 97.  doi: 10.1112/blms/27.2.97.  Google Scholar

[14]

E. Miranda, On Symplectic Linearization of Singular Lagrangian Foliations,, Ph.D. Thesis, (2003).   Google Scholar

[15]

E. Miranda and R. Solha, On a Poincaré lemma for foliations,, in Foliations 2012, (2012), 115.   Google Scholar

[16]

E. Miranda and S. Vũ Ngoc, A singular Poincaré lemma,, International Mathematics Research Notices, 2005 (2005).   Google Scholar

[17]

E. Miranda and N. T. Zung, Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems,, Ann. Sci. École Norm. Sup. (4), 37 (2004), 819.  doi: 10.1016/j.ansens.2004.10.001.  Google Scholar

[18]

E. Miranda and F. Presas, Geometric quantization of real polarizations via sheaves,, to appear in The Journal of Symplectic Geometry, ().   Google Scholar

[19]

H.-J. Petzsche, On E. Borel's theorem,, Math. Ann., 282 (1988), 299.  doi: 10.1007/BF01456977.  Google Scholar

[20]

J. Rawnsley, On the cohomology groups of a polarisation and diagonal quantisation,, Trans. Amer. Math. Soc., 230 (1977), 235.  doi: 10.1090/S0002-9947-1977-0648775-2.  Google Scholar

[21]

J. Śniatycki, On cohomology groups appearing in geometric quantization,, in Differential Geometric Methods in Mathematical Physics (Proc. Sympos., (1975), 46.   Google Scholar

[22]

R. Solha, On Geometric Quantisation of Integrable Systems with Singularities,, Ph.D. thesis, (2013).   Google Scholar

[23]

H. Sussmann, Orbits of families of vector fields and integrability of distributions,, Trans. Amer. Math. Soc., 180 (1973), 171.  doi: 10.1090/S0002-9947-1973-0321133-2.  Google Scholar

[24]

J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems,, Amer. J. Math., 58 (1936), 141.  doi: 10.2307/2371062.  Google Scholar

[25]

N. Woodhouse, Geometric Quantization,, Second edition, (1992).   Google Scholar

show all references

References:
[1]

M. Bertelson, Remarks on a Künneth formula for foliated de Rham cohomology,, Pacific J. Math., 252 (2011), 257.  doi: 10.2140/pjm.2011.252.257.  Google Scholar

[2]

R. Bott and L. Tu, Differential Forms in Algebraic Topology,, Graduate Texts in Mathematics, (1982).   Google Scholar

[3]

G. Bredon, Sheaf Theory,, Second edition, (1997).  doi: 10.1007/978-1-4612-0647-7.  Google Scholar

[4]

L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals,, Ph.D. Thesis, (1984).   Google Scholar

[5]

L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case,, Comment. Math. Helv., 65 (1990), 4.  doi: 10.1007/BF02566590.  Google Scholar

[6]

A. Grothendieck, Séminaire Schwartz de la Faculté des Sciences de Paris, 1953/1954. Produits tensoriels topologiques d'espaces vectoriels topologiques,, in Espaces Vectoriels Topologiques Nucléaires. Applications, (1954).   Google Scholar

[7]

V. Guillemin and S. Sternberg, The Gel'fand-Cetlin system and quantization of the complex flag manifolds,, J. Funct. Anal., 52 (1983), 106.  doi: 10.1016/0022-1236(83)90092-7.  Google Scholar

[8]

V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations,, Inventiones Mathematicae, 67 (1982), 515.  doi: 10.1007/BF01398934.  Google Scholar

[9]

M. Hamilton, Locally toric manifolds and singular Bohr-Sommerfeld leaves,, Mem. Amer. Math. Soc., 207 (2010).  doi: 10.1090/S0065-9266-10-00583-1.  Google Scholar

[10]

M. Hamilton and E. Miranda, Geometric quantization of integrable systems with hyperbolic singularities,, Ann. Inst. Fourier (Grenoble), 60 (2010), 51.  doi: 10.5802/aif.2517.  Google Scholar

[11]

L. Kaup, Eine Künnethformel für Fréchetgarben,, Math. Z., 97 (1967), 158.   Google Scholar

[12]

B. Kostant, Quantization and unitary representations. Part I. Prequantization,, in Lectures in Modern Analysis and Applications, (1970).   Google Scholar

[13]

K. Mackenzie, Lie algebroids and Lie pseudoalgebras,, Bull. London Math. Soc., 27 (1995), 97.  doi: 10.1112/blms/27.2.97.  Google Scholar

[14]

E. Miranda, On Symplectic Linearization of Singular Lagrangian Foliations,, Ph.D. Thesis, (2003).   Google Scholar

[15]

E. Miranda and R. Solha, On a Poincaré lemma for foliations,, in Foliations 2012, (2012), 115.   Google Scholar

[16]

E. Miranda and S. Vũ Ngoc, A singular Poincaré lemma,, International Mathematics Research Notices, 2005 (2005).   Google Scholar

[17]

E. Miranda and N. T. Zung, Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems,, Ann. Sci. École Norm. Sup. (4), 37 (2004), 819.  doi: 10.1016/j.ansens.2004.10.001.  Google Scholar

[18]

E. Miranda and F. Presas, Geometric quantization of real polarizations via sheaves,, to appear in The Journal of Symplectic Geometry, ().   Google Scholar

[19]

H.-J. Petzsche, On E. Borel's theorem,, Math. Ann., 282 (1988), 299.  doi: 10.1007/BF01456977.  Google Scholar

[20]

J. Rawnsley, On the cohomology groups of a polarisation and diagonal quantisation,, Trans. Amer. Math. Soc., 230 (1977), 235.  doi: 10.1090/S0002-9947-1977-0648775-2.  Google Scholar

[21]

J. Śniatycki, On cohomology groups appearing in geometric quantization,, in Differential Geometric Methods in Mathematical Physics (Proc. Sympos., (1975), 46.   Google Scholar

[22]

R. Solha, On Geometric Quantisation of Integrable Systems with Singularities,, Ph.D. thesis, (2013).   Google Scholar

[23]

H. Sussmann, Orbits of families of vector fields and integrability of distributions,, Trans. Amer. Math. Soc., 180 (1973), 171.  doi: 10.1090/S0002-9947-1973-0321133-2.  Google Scholar

[24]

J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems,, Amer. J. Math., 58 (1936), 141.  doi: 10.2307/2371062.  Google Scholar

[25]

N. Woodhouse, Geometric Quantization,, Second edition, (1992).   Google Scholar

[1]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[2]

Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81

[3]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[4]

M. R. S. Kulenović, J. Marcotte, O. Merino. Properties of basins of attraction for planar discrete cooperative maps. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2721-2737. doi: 10.3934/dcdsb.2020202

[5]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[6]

Carlos Gutierrez, Nguyen Van Chau. A remark on an eigenvalue condition for the global injectivity of differentiable maps of $R^2$. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 397-402. doi: 10.3934/dcds.2007.17.397

[7]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[8]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[9]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[10]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[11]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[12]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[13]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[14]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[15]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[16]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[17]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[18]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[19]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[20]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]