# American Institute of Mathematical Sciences

December  2013, 5(4): 473-491. doi: 10.3934/jgm.2013.5.473

## A Poincaré lemma in geometric quantisation

 1 Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, EPSEB, Avinguda del Doctor Marañón, 44-50, 08028, Barcelona, Spain 2 Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, ETSEIB, Avinguda Diagonal 647, 08028, Barcelona, Spain

Received  June 2013 Revised  December 2013 Published  December 2013

This article presents a Poincaré lemma for the Kostant complex, used to compute geometric quantisation, when the polarisation is given by a Lagrangian foliation defined by an integrable system with nondegenerate singularities.
Citation: Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473
##### References:
 [1] M. Bertelson, Remarks on a Künneth formula for foliated de Rham cohomology, Pacific J. Math., 252 (2011), 257-274. doi: 10.2140/pjm.2011.252.257. [2] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, 82, Springer-Verlag, New York-Berlin, 1982. [3] G. Bredon, Sheaf Theory, Second edition, Graduate Texts in Mathematics, 170, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0647-7. [4] L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals, Ph.D. Thesis, Stockholm University, 1984. [5] L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case, Comment. Math. Helv., 65 (1990), 4-35. doi: 10.1007/BF02566590. [6] A. Grothendieck, Séminaire Schwartz de la Faculté des Sciences de Paris, 1953/1954. Produits tensoriels topologiques d'espaces vectoriels topologiques, in Espaces Vectoriels Topologiques Nucléaires. Applications, Exposé 24, Secrétariat Mathématique, 11 rue Pierre Curie, Paris, 1954. [7] V. Guillemin and S. Sternberg, The Gel'fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal., 52 (1983), 106-128. doi: 10.1016/0022-1236(83)90092-7. [8] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Inventiones Mathematicae, 67 (1982), 515-538. doi: 10.1007/BF01398934. [9] M. Hamilton, Locally toric manifolds and singular Bohr-Sommerfeld leaves, Mem. Amer. Math. Soc., 207 (2010). doi: 10.1090/S0065-9266-10-00583-1. [10] M. Hamilton and E. Miranda, Geometric quantization of integrable systems with hyperbolic singularities, Ann. Inst. Fourier (Grenoble), 60 (2010), 51-85. doi: 10.5802/aif.2517. [11] L. Kaup, Eine Künnethformel für Fréchetgarben, Math. Z., 97 (1967), 158-168. [12] B. Kostant, Quantization and unitary representations. Part I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, Vol. 170, Springer, Berlin, 1970. [13] K. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc., 27 (1995), 97-147. doi: 10.1112/blms/27.2.97. [14] E. Miranda, On Symplectic Linearization of Singular Lagrangian Foliations, Ph.D. Thesis, Universitat de Barcelona, 2003. [15] E. Miranda and R. Solha, On a Poincaré lemma for foliations, in Foliations 2012, World Scientific, 2013, 115-137. [16] E. Miranda and S. Vũ Ngoc, A singular Poincaré lemma, International Mathematics Research Notices, 2005 (2005). [17] E. Miranda and N. T. Zung, Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. École Norm. Sup. (4), 37 (2004), 819-839. doi: 10.1016/j.ansens.2004.10.001. [18] E. Miranda and F. Presas, Geometric quantization of real polarizations via sheaves,, to appear in The Journal of Symplectic Geometry, (). [19] H.-J. Petzsche, On E. Borel's theorem, Math. Ann., 282 (1988), 299-313. doi: 10.1007/BF01456977. [20] J. Rawnsley, On the cohomology groups of a polarisation and diagonal quantisation, Trans. Amer. Math. Soc., 230 (1977), 235-255. doi: 10.1090/S0002-9947-1977-0648775-2. [21] J. Śniatycki, On cohomology groups appearing in geometric quantization, in Differential Geometric Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Mathematics, Vol. 570, Springer, Berlin, 1977, 46-66. [22] R. Solha, On Geometric Quantisation of Integrable Systems with Singularities, Ph.D. thesis, Universitat Politècnica de Catalunya, 2013. [23] H. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., 180 (1973), 171-188. doi: 10.1090/S0002-9947-1973-0321133-2. [24] J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58 (1936), 141-163. doi: 10.2307/2371062. [25] N. Woodhouse, Geometric Quantization, Second edition, Oxford Mathematical Monographs, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992.

show all references

##### References:
 [1] M. Bertelson, Remarks on a Künneth formula for foliated de Rham cohomology, Pacific J. Math., 252 (2011), 257-274. doi: 10.2140/pjm.2011.252.257. [2] R. Bott and L. Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, 82, Springer-Verlag, New York-Berlin, 1982. [3] G. Bredon, Sheaf Theory, Second edition, Graduate Texts in Mathematics, 170, Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0647-7. [4] L. H. Eliasson, Hamiltonian Systems with Poisson Commuting Integrals, Ph.D. Thesis, Stockholm University, 1984. [5] L. H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals-elliptic case, Comment. Math. Helv., 65 (1990), 4-35. doi: 10.1007/BF02566590. [6] A. Grothendieck, Séminaire Schwartz de la Faculté des Sciences de Paris, 1953/1954. Produits tensoriels topologiques d'espaces vectoriels topologiques, in Espaces Vectoriels Topologiques Nucléaires. Applications, Exposé 24, Secrétariat Mathématique, 11 rue Pierre Curie, Paris, 1954. [7] V. Guillemin and S. Sternberg, The Gel'fand-Cetlin system and quantization of the complex flag manifolds, J. Funct. Anal., 52 (1983), 106-128. doi: 10.1016/0022-1236(83)90092-7. [8] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Inventiones Mathematicae, 67 (1982), 515-538. doi: 10.1007/BF01398934. [9] M. Hamilton, Locally toric manifolds and singular Bohr-Sommerfeld leaves, Mem. Amer. Math. Soc., 207 (2010). doi: 10.1090/S0065-9266-10-00583-1. [10] M. Hamilton and E. Miranda, Geometric quantization of integrable systems with hyperbolic singularities, Ann. Inst. Fourier (Grenoble), 60 (2010), 51-85. doi: 10.5802/aif.2517. [11] L. Kaup, Eine Künnethformel für Fréchetgarben, Math. Z., 97 (1967), 158-168. [12] B. Kostant, Quantization and unitary representations. Part I. Prequantization, in Lectures in Modern Analysis and Applications, III, Lecture Notes in Mathematics, Vol. 170, Springer, Berlin, 1970. [13] K. Mackenzie, Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc., 27 (1995), 97-147. doi: 10.1112/blms/27.2.97. [14] E. Miranda, On Symplectic Linearization of Singular Lagrangian Foliations, Ph.D. Thesis, Universitat de Barcelona, 2003. [15] E. Miranda and R. Solha, On a Poincaré lemma for foliations, in Foliations 2012, World Scientific, 2013, 115-137. [16] E. Miranda and S. Vũ Ngoc, A singular Poincaré lemma, International Mathematics Research Notices, 2005 (2005). [17] E. Miranda and N. T. Zung, Equivariant normal form for nondegenerate singular orbits of integrable Hamiltonian systems, Ann. Sci. École Norm. Sup. (4), 37 (2004), 819-839. doi: 10.1016/j.ansens.2004.10.001. [18] E. Miranda and F. Presas, Geometric quantization of real polarizations via sheaves,, to appear in The Journal of Symplectic Geometry, (). [19] H.-J. Petzsche, On E. Borel's theorem, Math. Ann., 282 (1988), 299-313. doi: 10.1007/BF01456977. [20] J. Rawnsley, On the cohomology groups of a polarisation and diagonal quantisation, Trans. Amer. Math. Soc., 230 (1977), 235-255. doi: 10.1090/S0002-9947-1977-0648775-2. [21] J. Śniatycki, On cohomology groups appearing in geometric quantization, in Differential Geometric Methods in Mathematical Physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), Lecture Notes in Mathematics, Vol. 570, Springer, Berlin, 1977, 46-66. [22] R. Solha, On Geometric Quantisation of Integrable Systems with Singularities, Ph.D. thesis, Universitat Politècnica de Catalunya, 2013. [23] H. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., 180 (1973), 171-188. doi: 10.1090/S0002-9947-1973-0321133-2. [24] J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems, Amer. J. Math., 58 (1936), 141-163. doi: 10.2307/2371062. [25] N. Woodhouse, Geometric Quantization, Second edition, Oxford Mathematical Monographs, Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1992.
 [1] Manuel del Pino, Michal Kowalczyk, Juncheng Wei. The Jacobi-Toda system and foliated interfaces. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 975-1006. doi: 10.3934/dcds.2010.28.975 [2] Darryl D. Holm, Cesare Tronci. Geodesic Vlasov equations and their integrable moment closures. Journal of Geometric Mechanics, 2009, 1 (2) : 181-208. doi: 10.3934/jgm.2009.1.181 [3] Ulrike Kant, Werner M. Seiler. Singularities in the geometric theory of differential equations. Conference Publications, 2011, 2011 (Special) : 784-793. doi: 10.3934/proc.2011.2011.784 [4] Daniel Amin, Mikael Vejdemo-Johansson. Intrinsic disease maps using persistent cohomology. Foundations of Data Science, 2021  doi: 10.3934/fods.2021008 [5] Zhenning Cai, Yuwei Fan, Ruo Li. On hyperbolicity of 13-moment system. Kinetic and Related Models, 2014, 7 (3) : 415-432. doi: 10.3934/krm.2014.7.415 [6] Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 749-762. doi: 10.3934/dcds.2008.21.749 [7] Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681 [8] Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228 [9] Jianyu Chen, Hong-Kun Zhang. Statistical properties of one-dimensional expanding maps with singularities of low regularity. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 4955-4977. doi: 10.3934/dcds.2019203 [10] A. Doubov, Enrique Fernández-Cara, Manuel González-Burgos, J. H. Ortega. A geometric inverse problem for the Boussinesq system. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1213-1238. doi: 10.3934/dcdsb.2006.6.1213 [11] Larry M. Bates, Francesco Fassò. No monodromy in the champagne bottle, or singularities of a superintegrable system. Journal of Geometric Mechanics, 2016, 8 (4) : 375-389. doi: 10.3934/jgm.2016012 [12] Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic and Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533 [13] Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039 [14] Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008 [15] Gianluca Crippa, Milton C. Lopes Filho, Evelyne Miot, Helena J. Nussenzveig Lopes. Flows of vector fields with point singularities and the vortex-wave system. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2405-2417. doi: 10.3934/dcds.2016.36.2405 [16] Yi Zhang, Yuyun Zhao, Tao Xu, Xin Liu. $p$th Moment absolute exponential stability of stochastic control system with Markovian switching. Journal of Industrial and Management Optimization, 2016, 12 (2) : 471-486. doi: 10.3934/jimo.2016.12.471 [17] Misha Bialy, Andrey E. Mironov. Rich quasi-linear system for integrable geodesic flows on 2-torus. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 81-90. doi: 10.3934/dcds.2011.29.81 [18] Qiaoyi Hu, Zhijun Qiao. Analyticity, Gevrey regularity and unique continuation for an integrable multi-component peakon system with an arbitrary polynomial function. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6975-7000. doi: 10.3934/dcds.2016103 [19] Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171 [20] Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

2020 Impact Factor: 0.857