March  2014, 6(1): 1-23. doi: 10.3934/jgm.2014.6.1

Aspects of reduction and transformation of Lagrangian systems with symmetry

1. 

Department of Mathematics, Ghent University, Krijgslaan 281 S22, B9000 Ghent, Belgium, Belgium

2. 

Belgian Institute for Space Aeronomy, Ringlaan 3, B1180 Brussels, Belgium

Received  July 2013 Revised  January 2014 Published  April 2014

This paper contains results on geometric Routh reduction and it is a continuation of a previous paper [7] where a new class of transformations is introduced between Lagrangian systems obtained after Routh reduction. In general, these reduced Lagrangian systems have magnetic force terms and are singular in the sense that the Lagrangian does not depend on some velocity components. The main purpose of this paper is to show that the Routh reduction process itself is entirely captured by the application of such a new transformation on the initial Lagrangian system with symmetry.
Citation: E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, The Benjamin/Cummings Publishing Company, (1978).   Google Scholar

[2]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2885077.  Google Scholar

[3]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388.  doi: 10.1063/1.523597.  Google Scholar

[4]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence problem,, Ann. Inst. Henri Poincaré, 30 (1979), 129.   Google Scholar

[5]

S. M. Jalnapurkar and J. E. Marsden, Reduction of Hamilton's variational principle,, Dynamics and Stability of Systems, 15 (2000), 287.  doi: 10.1080/713603744.  Google Scholar

[6]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, volume I and II,, Interscience Publishers, (1963).   Google Scholar

[7]

B. Langerock, E. G. Andrés and F. Cantrijn, Routh reduction and the class of magnetic Lagrangian systems,, Journal Of Mathematical Physics, 53 (2012).  doi: 10.1063/1.4723841.  Google Scholar

[8]

B. Langerock, F. Cantrijn and J. Vankerschaver, Routhian reduction for quasi-invariant Lagrangians,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3277181.  Google Scholar

[9]

B. Langerock and M. C. Lopéz, Routhian reduction for singular Lagrangians,, J. Geom. Meth. Mod. Phys., 7 (2010), 1451.  doi: 10.1142/S0219887810004907.  Google Scholar

[10]

B. Langerock, T. Mestdag and J. Vankerschaver, Routh reduction by stages,, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011).  doi: 10.3842/SIGMA.2011.109.  Google Scholar

[11]

J. E. Marsden, Lectures on Mechanics,, Cambridge University Press, (1992).   Google Scholar

[12]

J. E. Marsden, G. Misiołek, J. P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages,, volume 1913 of Lecture Notes in Mathematics. Springer, (1913).   Google Scholar

[13]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[14]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum,, Z. Angew. Math. Phys., 44 (1993), 17.  doi: 10.1007/BF00914351.  Google Scholar

[15]

P. Morando and S. Sammarco, Variational problems with symmetries: A Pfaffian system approach,, Acta Appl. Math., 120 (2012), 255.  doi: 10.1007/s10440-012-9720-4.  Google Scholar

[16]

R. W. Sharpe, Differential Geometry,, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, (1997).   Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, The Benjamin/Cummings Publishing Company, (1978).   Google Scholar

[2]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2885077.  Google Scholar

[3]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388.  doi: 10.1063/1.523597.  Google Scholar

[4]

M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems I: The constraint algorithm and the equivalence problem,, Ann. Inst. Henri Poincaré, 30 (1979), 129.   Google Scholar

[5]

S. M. Jalnapurkar and J. E. Marsden, Reduction of Hamilton's variational principle,, Dynamics and Stability of Systems, 15 (2000), 287.  doi: 10.1080/713603744.  Google Scholar

[6]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, volume I and II,, Interscience Publishers, (1963).   Google Scholar

[7]

B. Langerock, E. G. Andrés and F. Cantrijn, Routh reduction and the class of magnetic Lagrangian systems,, Journal Of Mathematical Physics, 53 (2012).  doi: 10.1063/1.4723841.  Google Scholar

[8]

B. Langerock, F. Cantrijn and J. Vankerschaver, Routhian reduction for quasi-invariant Lagrangians,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3277181.  Google Scholar

[9]

B. Langerock and M. C. Lopéz, Routhian reduction for singular Lagrangians,, J. Geom. Meth. Mod. Phys., 7 (2010), 1451.  doi: 10.1142/S0219887810004907.  Google Scholar

[10]

B. Langerock, T. Mestdag and J. Vankerschaver, Routh reduction by stages,, SIGMA Symmetry Integrability Geom. Methods Appl., 7 (2011).  doi: 10.3842/SIGMA.2011.109.  Google Scholar

[11]

J. E. Marsden, Lectures on Mechanics,, Cambridge University Press, (1992).   Google Scholar

[12]

J. E. Marsden, G. Misiołek, J. P. Ortega, M. Perlmutter and T. S. Ratiu, Hamiltonian Reduction by Stages,, volume 1913 of Lecture Notes in Mathematics. Springer, (1913).   Google Scholar

[13]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[14]

J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum,, Z. Angew. Math. Phys., 44 (1993), 17.  doi: 10.1007/BF00914351.  Google Scholar

[15]

P. Morando and S. Sammarco, Variational problems with symmetries: A Pfaffian system approach,, Acta Appl. Math., 120 (2012), 255.  doi: 10.1007/s10440-012-9720-4.  Google Scholar

[16]

R. W. Sharpe, Differential Geometry,, volume 166 of Graduate Texts in Mathematics. Springer-Verlag, (1997).   Google Scholar

[1]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021004

[2]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[3]

Yuri Chekanov, Felix Schlenk. Notes on monotone Lagrangian twist tori. Electronic Research Announcements, 2010, 17: 104-121. doi: 10.3934/era.2010.17.104

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (1)

[Back to Top]