Citation: |
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed., Benjamin-Cummings, Reading (Ma), 1978. |
[2] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. |
[3] |
P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics: Hamilton-Jacobi equation and applications, Nonlinearity, 23 (2010), 1887-1918.doi: 10.1088/0951-7715/23/8/006. |
[4] |
L. Bates and J. Sniatycki, Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115.doi: 10.1016/0034-4877(93)90073-N. |
[5] |
F. Cantrijn, Vector fields generating invariants for classical dissipative systems, J. Math. Phys., 23 (1982), 1589-1595.doi: 10.1063/1.525569. |
[6] |
F. Cantrijn, M. de León and D. Martín de Diego, On almost-Poisson structures in nonholonomic mechanics, Nonlinearity, 12 (1999), 721-737.doi: 10.1088/0951-7715/12/3/316. |
[7] |
J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 1417-1458.doi: 10.1142/S0219887806001764. |
[8] |
J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 431-454.doi: 10.1142/S0219887810004385. |
[9] |
C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Hermann, Paris, 1969. |
[10] |
M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints, Journal of Mathematical Physics, 53 (2012), 072905 (29 pages).doi: 10.1063/1.4736733. |
[11] |
M. de León, D. Iglesias-Ponte and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, Journal of Physics A: Math. Gen., 41 (2008), 015205, 14 pp.doi: 10.1088/1751-8113/41/1/015205. |
[12] |
M. de León, J. C. Marrero and D. Martín de Diego, A geometric Hamilton-Jacobi theory for classical field theories, In: Variations, geometry and physics, 129-140, Nova Sci. Publ., New York, (2009). |
[13] |
M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.doi: 10.3934/jgm.2010.2.159. |
[14] |
M. de León, D. Martín de Diego, J. C. Marrero, M. Salgado and S. Vilariño, Hamilton-Jacobi theory in $k$-symplectic field theories, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 1491-1507.doi: 10.1142/S0219887810004919. |
[15] |
M. de León, J. C. Marrero, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular lagrangian systems, J. Math. Phys., 54 (2013), 032902, 32 pp.doi: 10.1063/1.4796088. |
[16] |
M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular lagrangian systems in the Skinner and Rusk setting, Int. J. Geom. Meth. Mod. Phys., 9 (2012), 1250074, 24 pp.doi: 10.1142/S0219887812500740. |
[17] |
M. de León, D. Martín de Diego, C. Martínez-Campos and M. Vaquero, A Hamilton-Jacobi theory in infinite dimensional phase spaces, In preparation. |
[18] |
M. de León and P. R. Rodrigues, Methods of differential geometry in analytical mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989. |
[19] |
P. Libermann and Ch.M- Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Co., Dordrecht, 1987.doi: 10.1007/978-94-009-3807-6. |
[20] |
J. C. Marrero and D. Sosa, The Hamilton-Jacobi equation on Lie affgebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 605-622.doi: 10.1142/S0219887806001284. |
[21] |
T. Oshawa and A. M. Bloch, Nonholonomic Hamilton-Jacobi equations and integrability, J. Geom. Mech., 1 (2009), 461-481.doi: 10.3934/jgm.2009.1.461. |
[22] |
H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Hazell, Watson and Viney Ltd., Aylesbury, Buckinghamshire, U.K. 1966. |
[23] |
I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118. Birkhäuser Verlag, Basel, 1994.doi: 10.1007/978-3-0348-8495-2. |
[24] |
A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34 (1994), 225-233.doi: 10.1016/0034-4877(94)90038-8. |