-
Previous Article
Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry
- JGM Home
- This Issue
-
Next Article
Geometric characterization of the workspace of non-orthogonal rotation axes
An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems
1. | Departamento de Matemática, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca and CONICET |
2. | Departamento de Matemática, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 172, 1900 La Plata, Argentina |
3. | Departamento de Mateemática and Instituto de Matemática Bahía Blanca, Universidad Nacional del Sur, Av. Alem 1253, 8000 Bahía Blanca and CONICET, Argentina |
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics,, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, (1978), 0.
|
[2] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics., Springer-Verlag, (1989), 0.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
P. Balseiro, M. de León, J. C. Marrero and D. Martĺn de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics,, J. Geom. Mech., 1 (2009), 1.
doi: 10.3934/jgm.2009.1.1. |
[4] |
M. Barbero-Liñán and M. C. Muñoz-Lecanda, Constraint algorithm for extremals in optimal control problems,, Int. J. Geom. Methods Mod. Phys., 6 (2009), 1221.
doi: 10.1142/S0219887809004193. |
[5] |
J. Barcelos-Neto and N. R. F. Braga, Symplectic analysis of a Dirac constrained theory,, J. Math. Phys., 35 (1994), 3497.
doi: 10.1063/1.530425. |
[6] |
C. Batlle, J. Gomis, J. M. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems,, J. Math. Phys., 27 (1986), 2953.
doi: 10.1063/1.527274. |
[7] |
C. Batlle, J. Gomis, J. M. Pons and N. Roman, Lagrangian and Hamiltonian constraints,, Lett. Math. Phys., 13 (1987), 17.
doi: 10.1007/BF00570763. |
[8] |
K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, volume 174 of Pitman Research Notes in Mathematics Series,, Longman Scientific & Technical, (1988).
|
[9] |
G. Blankenstein and T. S. Ratiu, Singular reduction of implicit Hamiltonian systems,, Rep. Math. Phys., 53 (2004), 211.
doi: 10.1016/S0034-4877(04)90013-4. |
[10] |
G. Blankenstein and T. S. Ratiu, Geometry of Dirac Structures,, Course at Summer School and Conference on Poisson Geometry, (2005). Google Scholar |
[11] |
A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics,, Springer-Verlag, (2003), 0.
doi: 10.1007/b97376. |
[12] |
A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits,, In Differential geometry and control (Boulder, 64 (1999), 103.
doi: 10.1090/pspum/064/1654513. |
[13] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.
doi: 10.1007/BF02199365. |
[14] |
A. V. Borisov and I. S. Mamaev, On the history of the development of the nonholonomic dynamics,, Regul. Chaotic Dyn., 7 (2002), 43.
doi: 10.1070/RD2002v007n01ABEH000194. |
[15] |
H. Bursztyn, Dirac Structures and Applications, La reconquête de la dynamique par la géométrie après Lagrange,, Conference at IHES, (2010). Google Scholar |
[16] |
H. Bursztyn, A brief introduction to Dirac manifolds,, Preprint, (2011). Google Scholar |
[17] |
H. Bursztyn and M. Crainic, Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps,, J. Differential Geom., 82 (2009), 501.
|
[18] |
F. Cantrijn, J. F. Cariñena, M. Crampin and L. A. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353.
doi: 10.1016/0393-0440(86)90014-8. |
[19] |
J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román, Canonical transformations theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961.
doi: 10.1063/1.526864. |
[20] |
J. F. Cariñena, Theory of singular Lagrangians,, Fortschr. Phys., 38 (1990), 641.
doi: 10.1002/prop.2190380902. |
[21] |
J. F. Cariñena and M. F. Rañada, Blow-up regularization of singular Lagrangians,, J. Math. Phys., 25 (1984), 2430.
doi: 10.1063/1.526450. |
[22] |
J. F. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers,, J. Phys. A, 26 (1993), 1335.
doi: 10.1088/0305-4470/26/6/016. |
[23] |
J. F. Cariñena and M. F. Rañada, Comments on the presymplectic formalism and the theory of regular Lagrangians with constraints,, J. Phys. A, 28 (1995), 0305.
doi: 10.1088/0305-4470/28/3/006. |
[24] |
J. F. Cariñena, C. Lñpez and N. Román-Roy, Origin of the Lagrangian constraints and their relation with the Hamiltonian formulation,, J. Math. Phys., 29 (1988), 1143.
doi: 10.1063/1.527955. |
[25] |
H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975.
doi: 10.1088/0305-4470/39/35/003. |
[26] |
H. Cendra, M. Etchechoury and S. Ferraro, The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry,, An. Acad. Nac. de Cs. Ex. Fís. Nat. (Argentina), 64 (2012), 95. Google Scholar |
[27] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, In Mathematics unlimited-2001 and beyond, (2001), 221.
|
[28] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001), 0065.
doi: 10.1090/memo/0722. |
[29] |
H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations,, Mosc. Math. J., 3 (2003), 833.
|
[30] |
H. Cendra, A. Ibort, M. de León and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785.
doi: 10.1063/1.1763245. |
[31] |
H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein anchored vector bundle reduction for mechanical systems with symmetry,, Preprint, (2011). Google Scholar |
[32] |
M. Chaichian, D. Louis Martinez and L. Lusanna, Dirac's constrained systems: The classification of second-class constraints,, Ann. Physics, 232 (1994), 40.
doi: 10.1006/aphy.1994.1049. |
[33] |
D. Chinea, M. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians,, J. Math. Phys., 35 (1994), 3410.
doi: 10.1063/1.530476. |
[34] |
L. O. Chua and J. D. McPherson, Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks,, IEEE Trans. Circuits and Systems, CAS-21 (1974), 277.
|
[35] |
L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, volume 47 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1989), 0.
|
[36] |
J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, volume 1793 of Lecture Notes in Mathematics,, Springer-Verlag, (2002), 3. Google Scholar |
[37] |
J. Cortés, M. de León, J. C. Marrero, D. M. de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509.
doi: 10.1142/S0219887806001211. |
[38] |
J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete Contin. Dyn. Syst., 24 (2009), 213.
doi: 10.3934/dcds.2009.24.213. |
[39] |
T. Courant and A. Weinstein, Beyond Poisson structures,, In Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, (1986), 39.
|
[40] |
T. J. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631.
doi: 10.1090/S0002-9947-1990-0998124-1. |
[41] |
M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 897.
doi: 10.1142/S0219887811005452. |
[42] |
M. Crampin and T. Mestdag, Reduction of invariant constrained systems using anholonomic frames,, J. Geom. Mech., 3 (2011), 23.
doi: 10.3934/jgm.2011.3.23. |
[43] |
M. de León, J. Marín-Solano and J. C. Marrero, The constraint algorithm in the jet formalism,, Differential Geom. Appl., 6 (1996), 275.
doi: 10.1016/0926-2245(96)82423-5. |
[44] |
M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105.
doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N. |
[45] |
M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds,, J. Math. Phys., 34 (1993), 622.
doi: 10.1063/1.530264. |
[46] |
M. de León, J. C. Marrero and D. Martín de Diego, Time-dependent constrained Hamiltonian systems and Dirac brackets,, J. Phys. A, 29 (1996), 6843.
doi: 10.1088/0305-4470/29/21/016. |
[47] |
M. de León, J. Carlos Marrero, D. Martín de Diego and M. Vaquero, On the Hamilton-Jacobi theory for singular Lagrangian systems,, J. Math. Phys., 54 (2013), 0022.
doi: 10.1063/1.4796088. |
[48] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A, 38 (2005), 0305.
doi: 10.1088/0305-4470/38/24/R01. |
[49] |
M. de León and D. Martín de Diego, On the geometry of non-holonomic Lagrangian systems,, J. Math. Phys., 37 (1996), 3389.
doi: 10.1063/1.531571. |
[50] |
M. de León, D. Martín de Diego and P. Pitanga, A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures,, J. Phys. A, 28 (1995), 4951.
doi: 10.1088/0305-4470/28/17/025. |
[51] |
M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular Lagrangian systems in the Skinner and Rusk setting,, Int. J. Geom. Methods Mod. Phys., 9 (2012), 0219.
doi: 10.1142/S0219887812500740. |
[52] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies,, North-Holland Publishing Co., (1989), 0.
|
[53] |
M. Delgado-Téllez and A. Ibort, On the geometry and topology of singular optimal control problems and their solutions,, Discrete Contin. Dyn. Syst., (2003), 223.
|
[54] |
P. A. M. Dirac, Generalized Hamiltonian dynamics,, Canadian J. Math., 2 (1950), 129.
doi: 10.4153/CJM-1950-012-1. |
[55] |
P. A. M. Dirac, Generalized Hamiltonian dynamics,, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326.
doi: 10.1098/rspa.1958.0141. |
[56] |
P. A. M. Dirac, Lectures on quantum mechanics,, Belfer Graduate School of Science Monographs Series. Belfer Graduate School of Science, (1967).
|
[57] |
M. J. Gotay, On the validity of Dirac's conjecture regarding first-class secondary constraints,, J. Phys. A, 16 (1983), 0305.
doi: 10.1088/0305-4470/16/5/003. |
[58] |
M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129.
|
[59] |
M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. II. The second-order equation problem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 32 (1980), 1.
|
[60] |
M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds,, In Geometric methods in mathematical physics (Proc. NSF-CBMS Conf., (1979), 78.
|
[61] |
M. J. Gotay and J. M. Nester, Apartheid in the Dirac theory of constraints,, J. Phys. A, 17 (1984), 3063.
doi: 10.1088/0305-4470/17/15/023. |
[62] |
M. J. Gotay and J. Śniatycki, On the quantization of presymplectic dynamical systems via coisotropic imbeddings,, Comm. Math. Phys., 82 (): 377.
doi: 10.1007/BF01237045. |
[63] |
M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388.
doi: 10.1063/1.523597. |
[64] |
J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint,, J. Math. Phys., 50 (2009), 0022.
doi: 10.1063/1.3049752. |
[65] |
X. Gràcia and J. M. Pons, Constrained systems: A unified geometric approach,, Internat. J. Theoret. Phys., 30 (1991), 511.
doi: 10.1007/BF00672895. |
[66] |
X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems,, Differential Geom. Appl., 2 (1992), 223.
doi: 10.1016/0926-2245(92)90012-C. |
[67] |
E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds,, J. Phys. A, 43 (2010).
doi: 10.1088/1751-8113/43/50/505201. |
[68] |
M. Henneaux and C. Teitelboim, Quantization of Gauge Systems,, Princeton University Press, (1992), 0.
|
[69] |
D. D. Holm, Geometric Mechanics. Part I,, Dynamics and symmetry. Imperial College Press, (2011), 978.
|
[70] |
D. D. Holm, Geometric mechanics. Part II. Rotating, translating and rolling,, Imperial College Press, (2011), 978.
doi: 10.1142/p802. |
[71] |
A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations,, Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295.
|
[72] |
A. Ibort, M. de León, J. C. Marrero and D. M. de Diego, Dirac brackets in constrained dynamics,, Fortschr. Phys., 47 (1999), 459.
doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E. |
[73] |
A. Ibort and J. Marín-Solano, Coisotropic regularization of singular Lagrangians,, J. Math. Phys., 36 (1995), 5522.
doi: 10.1063/1.531275. |
[74] |
D. Iglesias, J. C. Marrero, D. M. de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 1815.
doi: 10.3842/SIGMA.2007.049. |
[75] |
D. Krupka, The structure of the Euler-Lagrange mapping,, Izv. Vyssh. Uchebn. Zaved. Mat., 51 (2007), 52.
doi: 10.3103/S1066369X07120043. |
[76] |
O. Krupková, A geometric setting for higher-order Dirac-Bergmann theory of constraints,, J. Math. Phys., 35 (1994), 6557.
doi: 10.1063/1.530691. |
[77] |
O. Krupková, A new look at Dirac's theory of constrained systems,, In Gravity, (1996), 507.
doi: 10.1142/9789812830180_0024. |
[78] |
G. H. Livens, On Hamilton's principle and the modified function in analytical dynamics,, Proc. Roy. Soc. Edinburgh, 39 (1919). Google Scholar |
[79] |
L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangians and Hamiltonian constraints,, Riv. Nuovo Cimento (3), 14 (1991), 1.
doi: 10.1007/BF02810161. |
[80] |
L. Lusanna, Hamiltonian constraints and Dirac observables,, In Geometry of constrained dynamical systems (Cambridge, (1994), 117.
doi: 10.1017/CBO9780511895722.014. |
[81] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A, 30 (1997), 277.
doi: 10.1088/0305-4470/30/1/020. |
[82] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, volume 17 of Texts in Applied Mathematics. Springer-Verlag, (1994). Google Scholar |
[83] |
E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007).
doi: 10.3842/SIGMA.2007.050. |
[84] |
E. Martínez, Variational calculus on Lie algebroids,, ESAIM Control Optim. Calc. Var., 14 (2008), 356.
doi: 10.1051/cocv:2007056. |
[85] |
B. M. Maschke and A. J. van der Schaft, Note on the Dynamics of lc Circuits with Elements in Excess,, Memorandum 1426, (1426). Google Scholar |
[86] |
B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of network dynamics: Nonstandard Poisson structures and gyrators,, J. Franklin Inst., 329 (1992), 923.
doi: 10.1016/S0016-0032(92)90049-M. |
[87] |
B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits,, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 73.
doi: 10.1109/81.372847. |
[88] |
G. Mendella, G. Marmo and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A, 28 (1995), 149.
doi: 10.1088/0305-4470/28/1/018. |
[89] |
L. Moreau and D. Aeyels, A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits,, SIAM Rev., 46 (2004), 59.
doi: 10.1137/S0036144502409020. |
[90] |
N. Mukunda, Time-dependent constraints in classical dynamics,, Phys. Scripta, 21 (1980), 801.
doi: 10.1088/0031-8949/21/6/004. |
[91] |
N. Mukunda, The life and work of P. A. M. Dirac,, In Recent developments in theoretical physics (Kottayam, (1986), 260.
|
[92] |
Y. I. Neĭmark and N. A. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972). Google Scholar |
[93] |
N. Nikolaev, Reduction Theory and Dirac Geometry,, Master's thesis, (2011). Google Scholar |
[94] |
F. L. Pritchard, On implicit systems of differential equations,, J. Differential Equations, 194 (2003), 328.
doi: 10.1016/S0022-0396(03)00191-8. |
[95] |
P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110.
doi: 10.1006/jdeq.1994.1046. |
[96] |
K. D. Rothe and F. G. Scholtz, On the Hamilton-Jacobi equation for second-class constrained systems,, Ann. Physics, 308 (2003), 639.
doi: 10.1016/j.aop.2003.08.005. |
[97] |
R. Skinner, First-order equations of motion for classical mechanics,, J. Math. Phys., 24 (1983), 2581.
doi: 10.1063/1.525653. |
[98] |
R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T^* Q\oplus TQ$,, J. Math. Phys., 24 (1983), 2589.
doi: 10.1063/1.525654. |
[99] |
R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. II. Gauge transformations,, J. Math. Phys., 24 (1983), 2595.
doi: 10.1063/1.525655. |
[100] |
S. Smale, On the mathematical foundations of electrical circuit theory,, J. Differential Geometry, 7 (1972), 193.
|
[101] |
J. Śniatycki, Dirac brackets in geometric dynamics,, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 365.
|
[102] |
E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective,, Wiley-Interscience [John Wiley & Sons], (1974).
|
[103] |
K. Sundermeyer, Constrained Dynamics, With applications to Yang-Mills theory, general relativity, classical spin, dual string model, volume 169 of Lecture Notes in Physics,, Springer-Verlag, (1982).
|
[104] |
Z. Urban and D. Krupka, Variational sequences in mechanics on Grassmann fibrations,, Acta Appl. Math., 112 (2010), 225.
doi: 10.1007/s10440-010-9561-y. |
[105] |
A. J. van der Schaft, Equations of motion for Hamiltonian systems with constraints,, J. Phys. A, 20 (1987), 3271.
doi: 10.1088/0305-4470/20/11/030. |
[106] |
A. J. van der Schaft, Implicit Hamiltonian systems with symmetry,, Rep. Math. Phys., 41 (1998), 203.
doi: 10.1016/S0034-4877(98)80176-6. |
[107] |
A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225.
doi: 10.1016/0034-4877(94)90038-8. |
[108] |
A. Weinstein, The local structure of Poisson manifolds,, J. Differential Geom., 18 (1983), 523.
|
[109] |
A. Weinstein., Lagrangian mechanics and groupoids., In Mechanics day (Waterloo, (1992), 207.
|
[110] |
H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems,, J. Geom. Phys., 57 (2006), 133.
doi: 10.1016/j.geomphys.2006.02.009. |
[111] |
H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures,, J. Geom. Phys., 57 (2006), 209.
doi: 10.1016/j.geomphys.2006.02.012. |
[112] |
D. V. Zenkov, A. M. Bloch and J. E. Marsden, The energy-momentum method for the stability of non-holonomic systems,, Dynam. Stability Systems, 13 (1998), 123.
doi: 10.1080/02681119808806257. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics,, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, (1978), 0.
|
[2] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics., Springer-Verlag, (1989), 0.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
P. Balseiro, M. de León, J. C. Marrero and D. Martĺn de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics,, J. Geom. Mech., 1 (2009), 1.
doi: 10.3934/jgm.2009.1.1. |
[4] |
M. Barbero-Liñán and M. C. Muñoz-Lecanda, Constraint algorithm for extremals in optimal control problems,, Int. J. Geom. Methods Mod. Phys., 6 (2009), 1221.
doi: 10.1142/S0219887809004193. |
[5] |
J. Barcelos-Neto and N. R. F. Braga, Symplectic analysis of a Dirac constrained theory,, J. Math. Phys., 35 (1994), 3497.
doi: 10.1063/1.530425. |
[6] |
C. Batlle, J. Gomis, J. M. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems,, J. Math. Phys., 27 (1986), 2953.
doi: 10.1063/1.527274. |
[7] |
C. Batlle, J. Gomis, J. M. Pons and N. Roman, Lagrangian and Hamiltonian constraints,, Lett. Math. Phys., 13 (1987), 17.
doi: 10.1007/BF00570763. |
[8] |
K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, volume 174 of Pitman Research Notes in Mathematics Series,, Longman Scientific & Technical, (1988).
|
[9] |
G. Blankenstein and T. S. Ratiu, Singular reduction of implicit Hamiltonian systems,, Rep. Math. Phys., 53 (2004), 211.
doi: 10.1016/S0034-4877(04)90013-4. |
[10] |
G. Blankenstein and T. S. Ratiu, Geometry of Dirac Structures,, Course at Summer School and Conference on Poisson Geometry, (2005). Google Scholar |
[11] |
A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics,, Springer-Verlag, (2003), 0.
doi: 10.1007/b97376. |
[12] |
A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits,, In Differential geometry and control (Boulder, 64 (1999), 103.
doi: 10.1090/pspum/064/1654513. |
[13] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.
doi: 10.1007/BF02199365. |
[14] |
A. V. Borisov and I. S. Mamaev, On the history of the development of the nonholonomic dynamics,, Regul. Chaotic Dyn., 7 (2002), 43.
doi: 10.1070/RD2002v007n01ABEH000194. |
[15] |
H. Bursztyn, Dirac Structures and Applications, La reconquête de la dynamique par la géométrie après Lagrange,, Conference at IHES, (2010). Google Scholar |
[16] |
H. Bursztyn, A brief introduction to Dirac manifolds,, Preprint, (2011). Google Scholar |
[17] |
H. Bursztyn and M. Crainic, Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps,, J. Differential Geom., 82 (2009), 501.
|
[18] |
F. Cantrijn, J. F. Cariñena, M. Crampin and L. A. Ibort, Reduction of degenerate Lagrangian systems,, J. Geom. Phys., 3 (1986), 353.
doi: 10.1016/0393-0440(86)90014-8. |
[19] |
J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román, Canonical transformations theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961.
doi: 10.1063/1.526864. |
[20] |
J. F. Cariñena, Theory of singular Lagrangians,, Fortschr. Phys., 38 (1990), 641.
doi: 10.1002/prop.2190380902. |
[21] |
J. F. Cariñena and M. F. Rañada, Blow-up regularization of singular Lagrangians,, J. Math. Phys., 25 (1984), 2430.
doi: 10.1063/1.526450. |
[22] |
J. F. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers,, J. Phys. A, 26 (1993), 1335.
doi: 10.1088/0305-4470/26/6/016. |
[23] |
J. F. Cariñena and M. F. Rañada, Comments on the presymplectic formalism and the theory of regular Lagrangians with constraints,, J. Phys. A, 28 (1995), 0305.
doi: 10.1088/0305-4470/28/3/006. |
[24] |
J. F. Cariñena, C. Lñpez and N. Román-Roy, Origin of the Lagrangian constraints and their relation with the Hamiltonian formulation,, J. Math. Phys., 29 (1988), 1143.
doi: 10.1063/1.527955. |
[25] |
H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations,, J. Phys. A, 39 (2006), 10975.
doi: 10.1088/0305-4470/39/35/003. |
[26] |
H. Cendra, M. Etchechoury and S. Ferraro, The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry,, An. Acad. Nac. de Cs. Ex. Fís. Nat. (Argentina), 64 (2012), 95. Google Scholar |
[27] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, In Mathematics unlimited-2001 and beyond, (2001), 221.
|
[28] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001), 0065.
doi: 10.1090/memo/0722. |
[29] |
H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations,, Mosc. Math. J., 3 (2003), 833.
|
[30] |
H. Cendra, A. Ibort, M. de León and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785.
doi: 10.1063/1.1763245. |
[31] |
H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein anchored vector bundle reduction for mechanical systems with symmetry,, Preprint, (2011). Google Scholar |
[32] |
M. Chaichian, D. Louis Martinez and L. Lusanna, Dirac's constrained systems: The classification of second-class constraints,, Ann. Physics, 232 (1994), 40.
doi: 10.1006/aphy.1994.1049. |
[33] |
D. Chinea, M. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians,, J. Math. Phys., 35 (1994), 3410.
doi: 10.1063/1.530476. |
[34] |
L. O. Chua and J. D. McPherson, Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks,, IEEE Trans. Circuits and Systems, CAS-21 (1974), 277.
|
[35] |
L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, volume 47 of Mathematics and its Applications,, Kluwer Academic Publishers Group, (1989), 0.
|
[36] |
J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, volume 1793 of Lecture Notes in Mathematics,, Springer-Verlag, (2002), 3. Google Scholar |
[37] |
J. Cortés, M. de León, J. C. Marrero, D. M. de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509.
doi: 10.1142/S0219887806001211. |
[38] |
J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete Contin. Dyn. Syst., 24 (2009), 213.
doi: 10.3934/dcds.2009.24.213. |
[39] |
T. Courant and A. Weinstein, Beyond Poisson structures,, In Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, (1986), 39.
|
[40] |
T. J. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631.
doi: 10.1090/S0002-9947-1990-0998124-1. |
[41] |
M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 897.
doi: 10.1142/S0219887811005452. |
[42] |
M. Crampin and T. Mestdag, Reduction of invariant constrained systems using anholonomic frames,, J. Geom. Mech., 3 (2011), 23.
doi: 10.3934/jgm.2011.3.23. |
[43] |
M. de León, J. Marín-Solano and J. C. Marrero, The constraint algorithm in the jet formalism,, Differential Geom. Appl., 6 (1996), 275.
doi: 10.1016/0926-2245(96)82423-5. |
[44] |
M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105.
doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N. |
[45] |
M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds,, J. Math. Phys., 34 (1993), 622.
doi: 10.1063/1.530264. |
[46] |
M. de León, J. C. Marrero and D. Martín de Diego, Time-dependent constrained Hamiltonian systems and Dirac brackets,, J. Phys. A, 29 (1996), 6843.
doi: 10.1088/0305-4470/29/21/016. |
[47] |
M. de León, J. Carlos Marrero, D. Martín de Diego and M. Vaquero, On the Hamilton-Jacobi theory for singular Lagrangian systems,, J. Math. Phys., 54 (2013), 0022.
doi: 10.1063/1.4796088. |
[48] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A, 38 (2005), 0305.
doi: 10.1088/0305-4470/38/24/R01. |
[49] |
M. de León and D. Martín de Diego, On the geometry of non-holonomic Lagrangian systems,, J. Math. Phys., 37 (1996), 3389.
doi: 10.1063/1.531571. |
[50] |
M. de León, D. Martín de Diego and P. Pitanga, A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures,, J. Phys. A, 28 (1995), 4951.
doi: 10.1088/0305-4470/28/17/025. |
[51] |
M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular Lagrangian systems in the Skinner and Rusk setting,, Int. J. Geom. Methods Mod. Phys., 9 (2012), 0219.
doi: 10.1142/S0219887812500740. |
[52] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies,, North-Holland Publishing Co., (1989), 0.
|
[53] |
M. Delgado-Téllez and A. Ibort, On the geometry and topology of singular optimal control problems and their solutions,, Discrete Contin. Dyn. Syst., (2003), 223.
|
[54] |
P. A. M. Dirac, Generalized Hamiltonian dynamics,, Canadian J. Math., 2 (1950), 129.
doi: 10.4153/CJM-1950-012-1. |
[55] |
P. A. M. Dirac, Generalized Hamiltonian dynamics,, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326.
doi: 10.1098/rspa.1958.0141. |
[56] |
P. A. M. Dirac, Lectures on quantum mechanics,, Belfer Graduate School of Science Monographs Series. Belfer Graduate School of Science, (1967).
|
[57] |
M. J. Gotay, On the validity of Dirac's conjecture regarding first-class secondary constraints,, J. Phys. A, 16 (1983), 0305.
doi: 10.1088/0305-4470/16/5/003. |
[58] |
M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129.
|
[59] |
M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. II. The second-order equation problem,, Ann. Inst. H. Poincaré Sect. A (N.S.), 32 (1980), 1.
|
[60] |
M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds,, In Geometric methods in mathematical physics (Proc. NSF-CBMS Conf., (1979), 78.
|
[61] |
M. J. Gotay and J. M. Nester, Apartheid in the Dirac theory of constraints,, J. Phys. A, 17 (1984), 3063.
doi: 10.1088/0305-4470/17/15/023. |
[62] |
M. J. Gotay and J. Śniatycki, On the quantization of presymplectic dynamical systems via coisotropic imbeddings,, Comm. Math. Phys., 82 (): 377.
doi: 10.1007/BF01237045. |
[63] |
M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388.
doi: 10.1063/1.523597. |
[64] |
J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint,, J. Math. Phys., 50 (2009), 0022.
doi: 10.1063/1.3049752. |
[65] |
X. Gràcia and J. M. Pons, Constrained systems: A unified geometric approach,, Internat. J. Theoret. Phys., 30 (1991), 511.
doi: 10.1007/BF00672895. |
[66] |
X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems,, Differential Geom. Appl., 2 (1992), 223.
doi: 10.1016/0926-2245(92)90012-C. |
[67] |
E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds,, J. Phys. A, 43 (2010).
doi: 10.1088/1751-8113/43/50/505201. |
[68] |
M. Henneaux and C. Teitelboim, Quantization of Gauge Systems,, Princeton University Press, (1992), 0.
|
[69] |
D. D. Holm, Geometric Mechanics. Part I,, Dynamics and symmetry. Imperial College Press, (2011), 978.
|
[70] |
D. D. Holm, Geometric mechanics. Part II. Rotating, translating and rolling,, Imperial College Press, (2011), 978.
doi: 10.1142/p802. |
[71] |
A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations,, Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295.
|
[72] |
A. Ibort, M. de León, J. C. Marrero and D. M. de Diego, Dirac brackets in constrained dynamics,, Fortschr. Phys., 47 (1999), 459.
doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E. |
[73] |
A. Ibort and J. Marín-Solano, Coisotropic regularization of singular Lagrangians,, J. Math. Phys., 36 (1995), 5522.
doi: 10.1063/1.531275. |
[74] |
D. Iglesias, J. C. Marrero, D. M. de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 1815.
doi: 10.3842/SIGMA.2007.049. |
[75] |
D. Krupka, The structure of the Euler-Lagrange mapping,, Izv. Vyssh. Uchebn. Zaved. Mat., 51 (2007), 52.
doi: 10.3103/S1066369X07120043. |
[76] |
O. Krupková, A geometric setting for higher-order Dirac-Bergmann theory of constraints,, J. Math. Phys., 35 (1994), 6557.
doi: 10.1063/1.530691. |
[77] |
O. Krupková, A new look at Dirac's theory of constrained systems,, In Gravity, (1996), 507.
doi: 10.1142/9789812830180_0024. |
[78] |
G. H. Livens, On Hamilton's principle and the modified function in analytical dynamics,, Proc. Roy. Soc. Edinburgh, 39 (1919). Google Scholar |
[79] |
L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangians and Hamiltonian constraints,, Riv. Nuovo Cimento (3), 14 (1991), 1.
doi: 10.1007/BF02810161. |
[80] |
L. Lusanna, Hamiltonian constraints and Dirac observables,, In Geometry of constrained dynamical systems (Cambridge, (1994), 117.
doi: 10.1017/CBO9780511895722.014. |
[81] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations,, J. Phys. A, 30 (1997), 277.
doi: 10.1088/0305-4470/30/1/020. |
[82] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, volume 17 of Texts in Applied Mathematics. Springer-Verlag, (1994). Google Scholar |
[83] |
E. Martínez, Lie algebroids in classical mechanics and optimal control,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007).
doi: 10.3842/SIGMA.2007.050. |
[84] |
E. Martínez, Variational calculus on Lie algebroids,, ESAIM Control Optim. Calc. Var., 14 (2008), 356.
doi: 10.1051/cocv:2007056. |
[85] |
B. M. Maschke and A. J. van der Schaft, Note on the Dynamics of lc Circuits with Elements in Excess,, Memorandum 1426, (1426). Google Scholar |
[86] |
B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of network dynamics: Nonstandard Poisson structures and gyrators,, J. Franklin Inst., 329 (1992), 923.
doi: 10.1016/S0016-0032(92)90049-M. |
[87] |
B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits,, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 73.
doi: 10.1109/81.372847. |
[88] |
G. Mendella, G. Marmo and W. M. Tulczyjew, Integrability of implicit differential equations,, J. Phys. A, 28 (1995), 149.
doi: 10.1088/0305-4470/28/1/018. |
[89] |
L. Moreau and D. Aeyels, A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits,, SIAM Rev., 46 (2004), 59.
doi: 10.1137/S0036144502409020. |
[90] |
N. Mukunda, Time-dependent constraints in classical dynamics,, Phys. Scripta, 21 (1980), 801.
doi: 10.1088/0031-8949/21/6/004. |
[91] |
N. Mukunda, The life and work of P. A. M. Dirac,, In Recent developments in theoretical physics (Kottayam, (1986), 260.
|
[92] |
Y. I. Neĭmark and N. A. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972). Google Scholar |
[93] |
N. Nikolaev, Reduction Theory and Dirac Geometry,, Master's thesis, (2011). Google Scholar |
[94] |
F. L. Pritchard, On implicit systems of differential equations,, J. Differential Equations, 194 (2003), 328.
doi: 10.1016/S0022-0396(03)00191-8. |
[95] |
P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations,, J. Differential Equations, 109 (1994), 110.
doi: 10.1006/jdeq.1994.1046. |
[96] |
K. D. Rothe and F. G. Scholtz, On the Hamilton-Jacobi equation for second-class constrained systems,, Ann. Physics, 308 (2003), 639.
doi: 10.1016/j.aop.2003.08.005. |
[97] |
R. Skinner, First-order equations of motion for classical mechanics,, J. Math. Phys., 24 (1983), 2581.
doi: 10.1063/1.525653. |
[98] |
R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T^* Q\oplus TQ$,, J. Math. Phys., 24 (1983), 2589.
doi: 10.1063/1.525654. |
[99] |
R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. II. Gauge transformations,, J. Math. Phys., 24 (1983), 2595.
doi: 10.1063/1.525655. |
[100] |
S. Smale, On the mathematical foundations of electrical circuit theory,, J. Differential Geometry, 7 (1972), 193.
|
[101] |
J. Śniatycki, Dirac brackets in geometric dynamics,, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 365.
|
[102] |
E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective,, Wiley-Interscience [John Wiley & Sons], (1974).
|
[103] |
K. Sundermeyer, Constrained Dynamics, With applications to Yang-Mills theory, general relativity, classical spin, dual string model, volume 169 of Lecture Notes in Physics,, Springer-Verlag, (1982).
|
[104] |
Z. Urban and D. Krupka, Variational sequences in mechanics on Grassmann fibrations,, Acta Appl. Math., 112 (2010), 225.
doi: 10.1007/s10440-010-9561-y. |
[105] |
A. J. van der Schaft, Equations of motion for Hamiltonian systems with constraints,, J. Phys. A, 20 (1987), 3271.
doi: 10.1088/0305-4470/20/11/030. |
[106] |
A. J. van der Schaft, Implicit Hamiltonian systems with symmetry,, Rep. Math. Phys., 41 (1998), 203.
doi: 10.1016/S0034-4877(98)80176-6. |
[107] |
A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225.
doi: 10.1016/0034-4877(94)90038-8. |
[108] |
A. Weinstein, The local structure of Poisson manifolds,, J. Differential Geom., 18 (1983), 523.
|
[109] |
A. Weinstein., Lagrangian mechanics and groupoids., In Mechanics day (Waterloo, (1992), 207.
|
[110] |
H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems,, J. Geom. Phys., 57 (2006), 133.
doi: 10.1016/j.geomphys.2006.02.009. |
[111] |
H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures,, J. Geom. Phys., 57 (2006), 209.
doi: 10.1016/j.geomphys.2006.02.012. |
[112] |
D. V. Zenkov, A. M. Bloch and J. E. Marsden, The energy-momentum method for the stability of non-holonomic systems,, Dynam. Stability Systems, 13 (1998), 123.
doi: 10.1080/02681119808806257. |
[1] |
Andrew D. Lewis. Nonholonomic and constrained variational mechanics. Journal of Geometric Mechanics, 2020, 12 (2) : 165-308. doi: 10.3934/jgm.2020013 |
[2] |
Andrey Tsiganov. Poisson structures for two nonholonomic systems with partially reduced symmetries. Journal of Geometric Mechanics, 2014, 6 (3) : 417-440. doi: 10.3934/jgm.2014.6.417 |
[3] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[4] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[5] |
Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67 |
[6] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[7] |
Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167 |
[8] |
Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527 |
[9] |
Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1 |
[10] |
Farid Tari. Two-parameter families of implicit differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 139-162. doi: 10.3934/dcds.2005.13.139 |
[11] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[12] |
Hassan Najafi Alishah. Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures. Journal of Geometric Mechanics, 2020, 12 (2) : 149-164. doi: 10.3934/jgm.2020008 |
[13] |
Elena Goncharova, Maxim Staritsyn. On BV-extension of asymptotically constrained control-affine systems and complementarity problem for measure differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1061-1070. doi: 10.3934/dcdss.2018061 |
[14] |
Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105 |
[15] |
Matteo Petrera, Yuri B. Suris. Geometry of the Kahan discretizations of planar quadratic Hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor. Journal of Computational Dynamics, 2019, 6 (2) : 401-408. doi: 10.3934/jcd.2019020 |
[16] |
Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120. |
[17] |
Mathieu Molitor. On the relation between geometrical quantum mechanics and information geometry. Journal of Geometric Mechanics, 2015, 7 (2) : 169-202. doi: 10.3934/jgm.2015.7.169 |
[18] |
Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 |
[19] |
Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022 |
[20] |
Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]