Citation: |
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass., 1978. ISBN 0-8053-0102-X. Second edition, revised and enlarged, with the assistance of Tudor Ratiu and Richard Cushman. |
[2] |
V. I. Arnol'd, Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1989. ISBN 0-387-96890-3. Translated from the Russian by K. Vogtmann and A. Weinstein.doi: 10.1007/978-1-4757-2063-1. |
[3] |
P. Balseiro, M. de León, J. C. Marrero and D. Martĺn de Diego, The ubiquity of the symplectic Hamiltonian equations in mechanics, J. Geom. Mech., 1 (2009), 1-34.doi: 10.3934/jgm.2009.1.1. |
[4] |
M. Barbero-Liñán and M. C. Muñoz-Lecanda, Constraint algorithm for extremals in optimal control problems, Int. J. Geom. Methods Mod. Phys., 6 (2009), 1221-1233.doi: 10.1142/S0219887809004193. |
[5] |
J. Barcelos-Neto and N. R. F. Braga, Symplectic analysis of a Dirac constrained theory, J. Math. Phys., 35 (1994), 3497-3503.doi: 10.1063/1.530425. |
[6] |
C. Batlle, J. Gomis, J. M. Pons and N. Román-Roy, Equivalence between the Lagrangian and Hamiltonian formalism for constrained systems, J. Math. Phys., 27 (1986), 2953-2962.doi: 10.1063/1.527274. |
[7] |
C. Batlle, J. Gomis, J. M. Pons and N. Roman, Lagrangian and Hamiltonian constraints, Lett. Math. Phys., 13 (1987), 17-23.doi: 10.1007/BF00570763. |
[8] |
K. H. Bhaskara and K. Viswanath, Poisson Algebras and Poisson Manifolds, volume 174 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. |
[9] |
G. Blankenstein and T. S. Ratiu, Singular reduction of implicit Hamiltonian systems, Rep. Math. Phys., 53 (2004), 211-260.doi: 10.1016/S0034-4877(04)90013-4. |
[10] |
G. Blankenstein and T. S. Ratiu, Geometry of Dirac Structures, Course at Summer School and Conference on Poisson Geometry, ICTP, Trieste, 2005. URL http://cdsagenda5.ictp.trieste.it/askArchive.php?base=agenda&categ=a04198&id=a04198s4t3/lecture_notes. Retrieved May 2014. |
[11] |
A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics, Springer-Verlag, New York, 2003. ISBN 0-387-95535-6. With the collaboration of J. Baillieul, P. Crouch and J. Marsden, With scientific input from P. S. Krishnaprasad, R. M. Murray and D. Zenkov, Systems and Control.doi: 10.1007/b97376. |
[12] |
A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits, In Differential geometry and control (Boulder, CO, 1997), Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, RI, 64 (1999), 103-117.doi: 10.1090/pspum/064/1654513. |
[13] |
A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.doi: 10.1007/BF02199365. |
[14] |
A. V. Borisov and I. S. Mamaev, On the history of the development of the nonholonomic dynamics, Regul. Chaotic Dyn., 7 (2002), 43-47.doi: 10.1070/RD2002v007n01ABEH000194. |
[15] |
H. Bursztyn, Dirac Structures and Applications, La reconquête de la dynamique par la géométrie après Lagrange, Conference at IHES, March 2010. URL http://www.ihes.fr/document?id=2396&id_attribute=48. Retrieved July 2012. |
[16] |
H. Bursztyn, A brief introduction to Dirac manifolds, Preprint, arXiv:1112.5037 [math.DG], 2011. |
[17] |
H. Bursztyn and M. Crainic, Dirac geometry, quasi-Poisson actions and $D/G$-valued moment maps, J. Differential Geom., 82 (2009), 501-566. ISSN 0022-040X. URL http://projecteuclid.org/getRecord?id=euclid.jdg/1251122545. |
[18] |
F. Cantrijn, J. F. Cariñena, M. Crampin and L. A. Ibort, Reduction of degenerate Lagrangian systems, J. Geom. Phys., 3 (1986), 353-400.doi: 10.1016/0393-0440(86)90014-8. |
[19] |
J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román, Canonical transformations theory for presymplectic systems, J. Math. Phys., 26 (1985), 1961-1969.doi: 10.1063/1.526864. |
[20] |
J. F. Cariñena, Theory of singular Lagrangians, Fortschr. Phys., 38 (1990), 641-679.doi: 10.1002/prop.2190380902. |
[21] |
J. F. Cariñena and M. F. Rañada, Blow-up regularization of singular Lagrangians, J. Math. Phys., 25 (1984), 2430-2435.doi: 10.1063/1.526450. |
[22] |
J. F. Cariñena and M. F. Rañada, Lagrangian systems with constraints: A geometric approach to the method of Lagrange multipliers, J. Phys. A, 26 (1993), 1335-1351.doi: 10.1088/0305-4470/26/6/016. |
[23] |
J. F. Cariñena and M. F. Rañada, Comments on the presymplectic formalism and the theory of regular Lagrangians with constraints, J. Phys. A, 28 (1995), L91-L97. ISSN 0305-4470.doi: 10.1088/0305-4470/28/3/006. |
[24] |
J. F. Cariñena, C. Lñpez and N. Román-Roy, Origin of the Lagrangian constraints and their relation with the Hamiltonian formulation, J. Math. Phys., 29 (1988), 1143-1149. ISSN 0022-2488.doi: 10.1063/1.527955. |
[25] |
H. Cendra and M. Etchechoury, Desingularization of implicit analytic differential equations, J. Phys. A, 39 (2006), 10975-11001. ISSN 0305-4470.doi: 10.1088/0305-4470/39/35/003. |
[26] |
H. Cendra, M. Etchechoury and S. Ferraro, The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry, An. Acad. Nac. de Cs. Ex. Fís. Nat. (Argentina), 64 (2012), 95-115. |
[27] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems, In Mathematics unlimited-2001 and beyond, pages 221-273. Springer, Berlin, 2001a. |
[28] |
H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001), x+108. ISSN 0065-9266.doi: 10.1090/memo/0722. |
[29] |
H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations, Mosc. Math. J., 3 (2003), 833-867, 1197-1198. ISSN 1609-3321. |
[30] |
H. Cendra, A. Ibort, M. de León and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints, J. Math. Phys., 45 (2004), 2785-2801. ISSN 0022-2488.doi: 10.1063/1.1763245. |
[31] |
H. Cendra, J. E. Marsden, T. S. Ratiu and H. Yoshimura, Dirac-Weinstein anchored vector bundle reduction for mechanical systems with symmetry, Preprint, 2011. |
[32] |
M. Chaichian, D. Louis Martinez and L. Lusanna, Dirac's constrained systems: The classification of second-class constraints, Ann. Physics, 232 (1994), 40-60. ISSN 0003-4916.doi: 10.1006/aphy.1994.1049. |
[33] |
D. Chinea, M. de León and J. C. Marrero, The constraint algorithm for time-dependent Lagrangians, J. Math. Phys., 35 (1994), 3410-3447. ISSN 0022-2488.doi: 10.1063/1.530476. |
[34] |
L. O. Chua and J. D. McPherson, Explicit topological formulation of Lagrangian and Hamiltonian equations for nonlinear networks, IEEE Trans. Circuits and Systems, CAS-21 (1974), 277-286. ISSN 0098-4094. |
[35] |
L. A. Cordero, C. T. J. Dodson and M. de León, Differential Geometry of Frame Bundles, volume 47 of Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1989. ISBN 0-7923-0012-2. |
[36] |
J. Cortés, Geometric, Control and Numerical Aspects of Nonholonomic Systems, volume 1793 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2002. ISBN 3-540-44154-9. |
[37] |
J. Cortés, M. de León, J. C. Marrero, D. M. de Diego and E. Martínez, A survey of Lagrangian mechanics and control on Lie algebroids and groupoids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509-558. ISSN 0219-8878.doi: 10.1142/S0219887806001211. |
[38] |
J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., 24 (2009), 213-271. ISSN 1078-0947.doi: 10.3934/dcds.2009.24.213. |
[39] |
T. Courant and A. Weinstein, Beyond Poisson structures, In Action hamiltoniennes de groupes. Troisième théorème de Lie (Lyon, 1986), volume 27 of Travaux en Cours, pages 39-49. Hermann, Paris, 1988. |
[40] |
T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661. ISSN 0002-9947.doi: 10.1090/S0002-9947-1990-0998124-1. |
[41] |
M. Crampin and T. Mestdag, The Cartan form for constrained Lagrangian systems and the nonholonomic Noether theorem, Int. J. Geom. Methods Mod. Phys., 8 (2011), 897-923.doi: 10.1142/S0219887811005452. |
[42] |
M. Crampin and T. Mestdag, Reduction of invariant constrained systems using anholonomic frames, J. Geom. Mech., 3 (2011), 23-40.doi: 10.3934/jgm.2011.3.23. |
[43] |
M. de León, J. Marín-Solano and J. C. Marrero, The constraint algorithm in the jet formalism, Differential Geom. Appl., 6 (1996), 275-300.doi: 10.1016/0926-2245(96)82423-5. |
[44] |
M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles, Fortschr. Phys., 50 (2002), 105-169.doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N. |
[45] |
M. de León and J. C. Marrero, Constrained time-dependent Lagrangian systems and Lagrangian submanifolds, J. Math. Phys., 34 (1993), 622-644.doi: 10.1063/1.530264. |
[46] |
M. de León, J. C. Marrero and D. Martín de Diego, Time-dependent constrained Hamiltonian systems and Dirac brackets, J. Phys. A, 29 (1996), 6843-6859.doi: 10.1088/0305-4470/29/21/016. |
[47] |
M. de León, J. Carlos Marrero, D. Martín de Diego and M. Vaquero, On the Hamilton-Jacobi theory for singular Lagrangian systems, J. Math. Phys., 54 (2013), 032902, 32PP. ISSN 0022-2488.doi: 10.1063/1.4796088. |
[48] |
M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308. ISSN 0305-4470.doi: 10.1088/0305-4470/38/24/R01. |
[49] |
M. de León and D. Martín de Diego, On the geometry of non-holonomic Lagrangian systems, J. Math. Phys., 37 (1996), 3389-3414. ISSN 0022-2488.doi: 10.1063/1.531571. |
[50] |
M. de León, D. Martín de Diego and P. Pitanga, A new look at degenerate Lagrangian dynamics from the viewpoint of almost-product structures, J. Phys. A, 28 (1995), 4951-4971. ISSN 0305-4470.doi: 10.1088/0305-4470/28/17/025. |
[51] |
M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular Lagrangian systems in the Skinner and Rusk setting, Int. J. Geom. Methods Mod. Phys., 9 (2012), 1250074, 24PP. ISSN 0219-8878.doi: 10.1142/S0219887812500740. |
[52] |
M. de León and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, volume 158 of North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1989. ISBN 0-444-88017-8. |
[53] |
M. Delgado-Téllez and A. Ibort, On the geometry and topology of singular optimal control problems and their solutions, Discrete Contin. Dyn. Syst., (2003), 223-233. ISSN 1078-0947. Dynamical systems and differential equations (Wilmington, NC, 2002). |
[54] |
P. A. M. Dirac, Generalized Hamiltonian dynamics, Canadian J. Math., 2 (1950), 129-148. ISSN 0008-414X.doi: 10.4153/CJM-1950-012-1. |
[55] |
P. A. M. Dirac, Generalized Hamiltonian dynamics, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326-332. ISSN 0962-8444.doi: 10.1098/rspa.1958.0141. |
[56] |
P. A. M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series. Belfer Graduate School of Science, New York, 1967. |
[57] |
M. J. Gotay, On the validity of Dirac's conjecture regarding first-class secondary constraints, J. Phys. A, 16 (1983), L141-L145. ISSN 0305-4470.doi: 10.1088/0305-4470/16/5/003. |
[58] |
M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. I. The constraint algorithm and the equivalence theorem, Ann. Inst. H. Poincaré Sect. A (N.S.), 30 (1979), 129-142. ISSN 0020-2339. |
[59] |
M. J. Gotay and J. M. Nester, Presymplectic Lagrangian systems. II. The second-order equation problem, Ann. Inst. H. Poincaré Sect. A (N.S.), 32 (1980), 1-13. ISSN 0020-2339. |
[60] |
M. J. Gotay and J. M. Nester, Generalized constraint algorithm and special presymplectic manifolds, In Geometric methods in mathematical physics (Proc. NSF-CBMS Conf., Univ. Lowell, Lowell, Mass., 1979), volume 775 of Lecture Notes in Math., pages 78-104. Springer, Berlin, 1980. |
[61] |
M. J. Gotay and J. M. Nester, Apartheid in the Dirac theory of constraints, J. Phys. A, 17 (1984), 3063-3066. ISSN 0305-4470.doi: 10.1088/0305-4470/17/15/023. |
[62] |
M. J. Gotay and J. Śniatycki, On the quantization of presymplectic dynamical systems via coisotropic imbeddings, Comm. Math. Phys., 82 (1981/82), 377-389. ISSN 0010-3616. doi: 10.1007/BF01237045. |
[63] |
M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys., 19 (1978), 2388-2399. ISSN 0022-2488.doi: 10.1063/1.523597. |
[64] |
J. Grabowski, M. de León, J. C. Marrero and D. M. de Diego, Nonholonomic constraints: A new viewpoint, J. Math. Phys., 50 (2009), 013520, 17PP. ISSN 0022-2488.doi: 10.1063/1.3049752. |
[65] |
X. Gràcia and J. M. Pons, Constrained systems: A unified geometric approach, Internat. J. Theoret. Phys., 30 (1991), 511-516. ISSN 0020-7748.doi: 10.1007/BF00672895. |
[66] |
X. Gràcia and J. M. Pons, A generalized geometric framework for constrained systems, Differential Geom. Appl., 2 (1992), 223-247. ISSN 0926-2245.doi: 10.1016/0926-2245(92)90012-C. |
[67] |
E. Guzmán and J. C. Marrero, Time-dependent mechanics and Lagrangian submanifolds of presymplectic and Poisson manifolds, J. Phys. A, 43 (2010), 505201, 23PP.doi: 10.1088/1751-8113/43/50/505201. |
[68] |
M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, NJ, 1992. ISBN 0-691-08775-X; 0-691-03769-8. |
[69] |
D. D. Holm, Geometric Mechanics. Part I, Dynamics and symmetry. Imperial College Press, London, second edition, 2011. ISBN 978-1-84816-775-9; 1-84816-775-X. |
[70] |
D. D. Holm, Geometric mechanics. Part II. Rotating, translating and rolling, Imperial College Press, London, second edition, 2011. ISBN 978-1-84816-778-0; 1-84816-778-4.doi: 10.1142/p802. |
[71] |
A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations, Rend. Sem. Mat. Univ. Politec. Torino, 54 (1996), 295-317. Geometrical structures for physical theories, I (Vietri, 1996). |
[72] |
A. Ibort, M. de León, J. C. Marrero and D. M. de Diego, Dirac brackets in constrained dynamics, Fortschr. Phys., 47 (1999), 459-492. ISSN 0015-8208.doi: 10.1002/(SICI)1521-3978(199906)47:5<459::AID-PROP459>3.0.CO;2-E. |
[73] |
A. Ibort and J. Marín-Solano, Coisotropic regularization of singular Lagrangians, J. Math. Phys., 36 (1995), 5522-5539. ISSN 0022-2488.doi: 10.1063/1.531275. |
[74] |
D. Iglesias, J. C. Marrero, D. M. de Diego, E. Martínez and E. Padrón, Reduction of symplectic Lie algebroids by a Lie subalgebroid and a symmetry Lie group, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 049, 28PP. ISSN 1815-0659.doi: 10.3842/SIGMA.2007.049. |
[75] |
D. Krupka, The structure of the Euler-Lagrange mapping, Izv. Vyssh. Uchebn. Zaved. Mat., 51 (2007), 52-70.doi: 10.3103/S1066369X07120043. |
[76] |
O. Krupková, A geometric setting for higher-order Dirac-Bergmann theory of constraints, J. Math. Phys., 35 (1994), 6557-6576. ISSN 0022-2488.doi: 10.1063/1.530691. |
[77] |
O. Krupková, A new look at Dirac's theory of constrained systems, In Gravity, particles and space-time, pages 507-517. World Sci. Publ., River Edge, NJ, 1996.doi: 10.1142/9789812830180_0024. |
[78] |
G. H. Livens, On Hamilton's principle and the modified function in analytical dynamics, Proc. Roy. Soc. Edinburgh, 39 (1919), P113. |
[79] |
L. Lusanna, The second Noether theorem as the basis of the theory of singular Lagrangians and Hamiltonian constraints, Riv. Nuovo Cimento (3), 14 (1991), 1-75.doi: 10.1007/BF02810161. |
[80] |
L. Lusanna, Hamiltonian constraints and Dirac observables, In Geometry of constrained dynamical systems (Cambridge, 1994), pages 117-130. Cambridge Univ. Press, Cambridge, 1995.doi: 10.1017/CBO9780511895722.014. |
[81] |
G. Marmo, G. Mendella and W. M. Tulczyjew, Constrained Hamiltonian systems as implicit differential equations, J. Phys. A, 30 (1997), 277-293.doi: 10.1088/0305-4470/30/1/020. |
[82] |
J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, volume 17 of Texts in Applied Mathematics. Springer-Verlag, New York, 1994. |
[83] |
E. Martínez, Lie algebroids in classical mechanics and optimal control, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), Paper 050, 17 pp.doi: 10.3842/SIGMA.2007.050. |
[84] |
E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14 (2008), 356-380.doi: 10.1051/cocv:2007056. |
[85] |
B. M. Maschke and A. J. van der Schaft, Note on the Dynamics of lc Circuits with Elements in Excess, Memorandum 1426, Faculty of Applied Mathematics of the University of Twente, 1998. |
[86] |
B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of network dynamics: Nonstandard Poisson structures and gyrators, J. Franklin Inst., 329 (1992), 923-966.doi: 10.1016/S0016-0032(92)90049-M. |
[87] |
B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits, IEEE Trans. Circuits Systems I Fund. Theory Appl., 42 (1995), 73-82. ISSN 1057-7122.doi: 10.1109/81.372847. |
[88] |
G. Mendella, G. Marmo and W. M. Tulczyjew, Integrability of implicit differential equations, J. Phys. A, 28 (1995), 149-163.doi: 10.1088/0305-4470/28/1/018. |
[89] |
L. Moreau and D. Aeyels, A novel variational method for deriving Lagrangian and Hamiltonian models of inductor-capacitor circuits, SIAM Rev., 46 (2004), 59-84 (electronic).doi: 10.1137/S0036144502409020. |
[90] |
N. Mukunda, Time-dependent constraints in classical dynamics, Phys. Scripta, 21 (1980), 801-804.doi: 10.1088/0031-8949/21/6/004. |
[91] |
N. Mukunda, The life and work of P. A. M. Dirac, In Recent developments in theoretical physics (Kottayam, 1986), pages 260-282. World Sci. Publishing, Singapore, 1987. |
[92] |
Y. I. Neĭmark and N. A. Fufaev, Dynamics of Nonholonomic Systems, Translations of Mathematical Monographs, Vol. 33. American Mathematical Society, Providence, R.I., 1972. |
[93] |
N. Nikolaev, Reduction Theory and Dirac Geometry, Master's thesis, University of Waterloo, 2011. |
[94] |
F. L. Pritchard, On implicit systems of differential equations, J. Differential Equations, 194 (2003), 328-363.doi: 10.1016/S0022-0396(03)00191-8. |
[95] |
P. J. Rabier and W. C. Rheinboldt, A geometric treatment of implicit differential-algebraic equations, J. Differential Equations, 109 (1994), 110-146.doi: 10.1006/jdeq.1994.1046. |
[96] |
K. D. Rothe and F. G. Scholtz, On the Hamilton-Jacobi equation for second-class constrained systems, Ann. Physics, 308 (2003), 639-651.doi: 10.1016/j.aop.2003.08.005. |
[97] |
R. Skinner, First-order equations of motion for classical mechanics, J. Math. Phys., 24 (1983), 2581-2588.doi: 10.1063/1.525653. |
[98] |
R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T^* Q\oplus TQ$, J. Math. Phys., 24 (1983), 2589-2594.doi: 10.1063/1.525654. |
[99] |
R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. II. Gauge transformations, J. Math. Phys., 24 (1983), 2595-2601.doi: 10.1063/1.525655. |
[100] |
S. Smale, On the mathematical foundations of electrical circuit theory, J. Differential Geometry, 7 (1972), 193-210. |
[101] |
J. Śniatycki, Dirac brackets in geometric dynamics, Ann. Inst. H. Poincaré Sect. A (N.S.), 20 (1974), 365-372. |
[102] |
E. C. G. Sudarshan and N. Mukunda, Classical Dynamics: A Modern Perspective, Wiley-Interscience [John Wiley & Sons], New York, 1974. |
[103] |
K. Sundermeyer, Constrained Dynamics, With applications to Yang-Mills theory, general relativity, classical spin, dual string model, volume 169 of Lecture Notes in Physics, Springer-Verlag, Berlin-New York, 1982. |
[104] |
Z. Urban and D. Krupka, Variational sequences in mechanics on Grassmann fibrations, Acta Appl. Math., 112 (2010), 225-249.doi: 10.1007/s10440-010-9561-y. |
[105] |
A. J. van der Schaft, Equations of motion for Hamiltonian systems with constraints, J. Phys. A, 20 (1987), 3271-3277.doi: 10.1088/0305-4470/20/11/030. |
[106] |
A. J. van der Schaft, Implicit Hamiltonian systems with symmetry, Rep. Math. Phys., 41 (1998), 203-221.doi: 10.1016/S0034-4877(98)80176-6. |
[107] |
A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34 (1994), 225-233.doi: 10.1016/0034-4877(94)90038-8. |
[108] |
A. Weinstein, The local structure of Poisson manifolds, J. Differential Geom., 18 (1983), 523-557. URL http://projecteuclid.org/getRecord?id=euclid.jdg/1214437787. |
[109] |
A. Weinstein., Lagrangian mechanics and groupoids. In Mechanics day (Waterloo, ON, 1992), volume 7 of Fields Inst. Commun., pages 207-231. Amer. Math. Soc., Providence, RI, 1996. |
[110] |
H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. I. Implicit Lagrangian systems, J. Geom. Phys., 57 (2006), 133-156.doi: 10.1016/j.geomphys.2006.02.009. |
[111] |
H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. II. Variational structures, J. Geom. Phys., 57 (2006), 209-250.doi: 10.1016/j.geomphys.2006.02.012. |
[112] |
D. V. Zenkov, A. M. Bloch and J. E. Marsden, The energy-momentum method for the stability of non-holonomic systems, Dynam. Stability Systems, 13 (1998), 123-165.doi: 10.1080/02681119808806257. |